Automatic Failure Detection in Photovoltaic Solar Panel

Muhammad Hilmi Asyrofi

Failure Detection

Output

Warped Image of the object interest, i.e. PV. The number inside the box (PV cell) informs the pixel intensity. The red box shows that the algorithm discovers failure in the PV cell, i.e. the pixel intensity of the red box is significantly higher than the pixel intensity of the surrounding PV cells

mhilmiasyrofi@gmail.com

Input

The input image of Photovoltaic (PV) Solar Panel is obtained from Kaggle [1]. Each PV contains 4x9 cells on the left and 4x9 cells on the right. The white color of a cell that differs from the other cells indicates the particular cell has failure

Pipeline

- 1. Image Binarization
- 2. Filter with Flann Matching Algorithm
- 3. Detect Minimum Enclosing Quadrilateral
- 4. Warp with Perspective Transformation
- 5. Localize PV Grid
- 6. Detect Failure

Muhammad Hilmi Asyrofi

- utilize Otsu binarization to get a binary image containing the PV area
- take advantage of morphological transformations, specifically by closing, eroding, and dilating each contour (white color) in the binary image, to reduce the noise in the binary image

mhilmiasyrofi@gmail.com

Muhammad Hilmi Asyrofi

2 FLANN MATCHER

- develop a Flann matcher to filter the correct contour.
- the Flann matcher detects key points in the target image (right) by using a reference image of a PV (left).
- Iterate over contours found in the previous step, then get the contour where the majority of key points are located inside the particular contour

3 ENCLOSING QUADRILATERAL

- detect minimum enclosing rectangle (red line) for the contour (green line)
- identify the vertex of the quadrilateral contour by finding the 4 points (blue points) on the contour (green line) where each point has the minimum distance to each vertex of the rectangle (red line)

4 IMAGE WARPING

- warping means reshaping the contour that corresponds to the PV
- warp the quadrilateral contour into a rectangle with a perspective transformation

mhilmiasyrofi@gmail.com

5 LOCALIZE PV GRID

- The PV has a special characteristic: it has a regular dots pattern. We can use this information to detect each 4x9 PV grid
- utilize otsu and morphology operator to detect some dots (left).
 **note that some dots might be imperceptible due to the size
- detect dots where they lie on a parallel line and they have a consistent distance each other. It can be horizontally parallel or vertically parallel

5 LOCALIZE PV GRID

- Define the PV cell size by calculating the median distance between two neighboring dots.
- Create several imaginary 4x9 grids by varying the grid location.
- Perform a sliding window to get the fittest grid, i.e., the grid that has the lowest error score when the red dots are stretched on the grid

		•	Wai	rped l	mag	e	
				-	•		
				0	۰	۰	
			۰		۰		
		۰	۰		۰		
	۰	۰	۰		۰		
		•			۰	۰	۰
P	۰	۰			۰	۰	0
h	•					۰	0

6 DETECT FAILURE

- Measure the average pixel intensity for each cell in the grid
- Detect failure when the average pixel intensity of the particular cell has significant differences with the surrounding cells
- The red cell informs that there is a failure with the cell

	💿 😑 🕒 Warped Image													
174	174	171	165		173	171	165	162						
175	174	171	165	8	174	173	170	169						
177	176	174	173		177	178	181	177						
180	178	175	173		180	188	208	188						
180	177	173	170		181	189	191	184						
177	172	168	165		171	180	181	176						
230	174	168	163		166	174	176	171						
+86	+71	+8 5	+89		10 2	187	+72	+82						

	🔵 😑 🕒 Warped Image													
174								162						
175				۵				169						
177							181	177						
180						188	208	188						
180						189		184						
177	172							176						
230	174							171						
+86								+82						

ROBUSTNESS TEST

	🕽 🥚 🔵 Image													🔴 🌒 🌒 Warped Ima							
Contra la	5.00	ķ	25	400	84	96	88		204	205	201	194	Ī	206	204	198	19				
Canada				ь.									ļ	207	206						
THE				1									1			196					
										198											
22000									196							201					
													l								
									180	178			ľ								
									234	178											
									(72	173						184	16				

Muhammad Hilmi Asyrofi

ROBUSTNESS TEST

•

	Image									• • • Warped Image											
(CES)IN		初日	10	-	ġ	9		1	212	211	214	212	ł	-1	-1	-1	-1				
500			-	1	-			-	212	205	211	207	0		204	198					
			-		:				208	204	207	209									
18				ł				Concernance Concernance	213	209	218	210									
100				1				1	210		213	204	4	182							
88-									201	199	196										
No.		í.		de		-			4 <u>8</u> 9	195 191	193 1-89	+718		168	189	170	169				

🔍 😑 🌒 Image	🔴 🌢 🌢 Warped Ima									
Contraction and and and	200206 209 206 199 201 202 2									
and the second second second	205208 208 205 197 200 200 2									
	207207 208 207 201 201 200 2									
	208208 210 205 202 203 201 1									
	200202 202 199 196 197 198 1									
	189189 191 190 191 191 195 1									
	187187189188 +844894984480 1371831861									

Muhammad Hilmi Asyrofi

ROBUSTNESS TEST

•

$\bullet \bullet \bullet$	Im	Image						🔵 😑 🔵 Warped Image							
Constant of the	-	-					Color State	206	207	203	196	208	206	200	193
Circles · ·			1				100	208		204		209	208		
			τ.				Sec.	201		196		202		199	
and a								202				201			196
- · E							100	107	108					20.3	201
100 mg			1					197					108		
							2	193				182			
200							a	181	179				184		
Constant of								236	179						
			5					173	174	172	162	167	173	186	169

	Image		•	• \	Varp	ec	l Ima	age		
113	til I Targer - Lailan	174	174	171	165		173	171	165	162
		175				8				
11		177							181	177
		180						188	208	188
		180								
		177	172			1				
		230	174							
(+82

mhilmiasyrofi@gmail.com

Potential Works for Collaboration

PV Segmentation

The current approach to obtain the PV area using Otsu binarization is fast but it might not be accurate enough. There are some deep learning approaches for image segmentation proposed in the CV community, such as FastFCN, Gated-SCNN, and Facebook's Mask R-CNN.

The future work might try adapting these DL architectures for this task.

PV Grid Localization

Currently, the algorithm relies on regular dots to localize the PV grid. A different version of PV might not have this feature. The future work should try a general approach to localize the grid, e.g. perform a sliding window to measure the intensity of a small area of the grid and analyze the pixel intensity distribution using histogram