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Abstract—Due to the widespread adoption of Automatic Speech
Recognition (ASR) systems in many critical domains, ensuring
the quality of recognized transcriptions is of great importance.
A recent work, CrossASR++, can automatically uncover many
failures in ASR systems by taking advantage of the differential
testing technique. It employs a Text-To-Speech (TTS) system to
synthesize audios from texts and then reveals failed test cases
by feeding them to multiple ASR systems for cross-referencing.
However, no prior work tries to utilize the generated test cases
to enhance the quality of ASR systems. In this paper, we explore
the subsequent improvements brought by leveraging these test
cases from two aspects, which we collectively refer to as a
novel idea, evolutionary differential testing. On the one hand,
we fine-tune a target ASR system on the corresponding test
cases generated for it. On the other hand, we fine-tune a cross-
referenced ASR system inside CrossASR++, with the hope to
boost CrossASR++’s performance in uncovering more failed test
cases. Our experiment results empirically show that the above
methods to leverage the test cases can substantially improve both
the target ASR system and CrossASR++ itself. After fine-tuning,
the number of failed test cases uncovered decreases by 25.81%
and the word error rate of the improved target ASR system drops
by 45.81%. Moreover, by evolving just one cross-referenced ASR
system, CrossASR++ can find 5.70%, 7.25%, 3.93%, and 1.52%
more failed test cases for 4 target ASR systems, respectively.

Index Terms—Automatic Speech Recognition, Test Case Gen-
eration, Differential Testing

I. INTRODUCTION

Automatic Speech Recognition (ASR) is a pervasive part of
our daily life and has been applied in many critical domains,
e.g., voice commands for autonomous driving cars. Enhancing
the quality of the automatically recognized transcriptions is
essential for people to communicate with intelligent systems
seamlessly. An effective way to assure ASR software quality
is by performing adequate testing, which requires many test
cases in the form of pairs of audios and their corresponding
transcriptions. However, manually building such test cases for
ASR systems can be time-consuming and resource-intensive,
mainly because both collecting inputs (i.e., recording audios)
and deciding oracles (i.e., correct transcripts) often require
a substantial amount of manual labeling work. To automate
the tedious process, researchers proposed some automatic test
generation tools for ASR systems, e.g., CrossASR [1] and
its successor CrossASR++ [2]. Both tools leverage recent
advances in Text-to-Speech (TTS) systems and ASR systems
to uncover failed test cases in a purely black-box manner
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without human supervision. More specifically, they first use
a TTS service to transcribe an input text to an audio file and
combine them into an audio-text pair. Then, to avoid using the
invalid audios synthesized by the TTS system, the generated
audio-text pair is fed into multiple ASR systems for cross-
referencing: If at least one ASR system correctly recognizes
the audio, the audio-text pair is viewed as a valid test case.

Unlike the conventional software systems whose logic is
encoded in control and data flows, ASR systems, as other
deep learning (DL) programs, encode software behaviors with
model parameters and non-linear activation functions. When
an ASR system has defects, namely, when an ASR system
cannot correctly recognize the audio of a valid test case,
developers will collect more data to improve its model. A
natural question to ask is how the generated test cases can
be leveraged to improve an ASR system. Moreover, as a
tool closely relying on ASR systems, CrossASR++ is self-
improvable [2]: its ability to uncover failed test cases can be
boosted by utilizing better ASR systems for cross-referencing.
Thus we are also interested in whether we can improve the
performance of CrossASR++ (i.e., in finding more failed test
cases) by improving one of the cross-referenced ASR systems
with generated test cases.

In this work, we leverage the generated valid test cases
along with the running of CrossASR++ to make both the
ASR system under test (SUT) and CrossASR++ evolve si-
multaneously, which we collectively refer to as evolutionary
differential testing. Specifically, we create a training set by
combining all the valid test cases generated so far and fine-
tune the SUT on the training set to investigate its consequent
improvement. Additionally, we enable CrossASR++ to record
test cases identified for cross-referenced ASR systems as well.
Since CrossASR++ utilizes the improved ASRs for cross-
referencing, it may find more failed test cases for SUTs. To
the best of our knowledge, this work is the first exploration of
using automatically generated test cases to improve both the
ASR system and the test case generation tool. In particular, we
empirically evaluate the improvements brought by generated
test cases by answering the following two research questions:
RQ1. Can test cases generated through differential testing be
leveraged to improve an ASR system under test?
RQ2. Can the generated test cases be leveraged to improve
the performance of CrossASR++?

We design and perform experiments to answer the two
questions. First, we consider the evolution of the SUT. We
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Fig. 1. This figure shows an overview of CrossASR++ and how to utilize its generated test cases to improve a target ASR system and cross-referenced
ASR systems. Conceptually, CrossASR++ has two main components: (1) the differential testing module and (2) the failure estimator. The differential testing
module takes a piece of text and automatically generates a test case from it. The test cases can be indeterminable, successful, and failed ones. To uncover
failed test cases more efficiently, CrossASR++ trains a failure estimator and prioritizes texts that are more likely to become failed test cases. The right side
of this figure shows how we leverage generated test cases. We store test cases for both the ASR system under test (SUT ) and cross-referenced ASR systems
and then fine-tune these ASR systems on their corresponding test cases.

use two metrics to evaluate the performance of the SUT. One
is the number of failed test cases uncovered by CrossASR++,
and the other is the word error rate (WER) on a test set. The
experimental results show that the number of failed test cases
uncovered for the improved SUT decreases by 25.81%, and
the WER decreases from 7.99% to 4.33% (this corresponds
to a relative improvement of 45.81%). Then, we consider the
evolution of CrossASR++. To measure the improvement of
CrossASR++, we compare the numbers of failed test cases
uncovered by the original and the evolved CrossASR++. We
fine-tune one of the cross-referenced ASR systems and find
that such improvement can help CrossASR++ find 5.70%,
7.25%, 3.93%, and 1.52% more failed test cases for the other
4 ASR systems, respectively. The results highlight that the
automatically generated test cases can be utilized to enhance
both quality of an ASR system and the performance of
CrossASR++ itself.

The rest of this paper is organized as follows. Section II
briefly describes CrossASR++ and how we utilize the gener-
ated test cases. In Section III, we describe our experiments
that demonstrate the viability of our new idea. Section IV
discusses some related works. Finally, we conclude the paper
and present future work in Section V.

II. CROSSASR++ AND USAGE OF GENERATED TESTS

This section first presents how CrossASR++ applies dif-
ferential testing to automatically generate test cases for ASR
systems. Then, we explain our idea of evolutionary differential
testing that leverages the generated test cases in two aspects:
(1) improving the performance of an ASR system under test
(SUT) by fine-tuning it, and (2) improving the performance of
CrossASR++, i.e., its ability in uncovering failed test cases,
by fine-tuning one of the cross-referenced ASRs.

A. CrossASR++

Differential testing is a technique that identifies bugs in
software systems by observing whether systems with the
same functionality yield different outputs when provided with

identical inputs [3]. Differential testing has shown to be effec-
tive in revealing failures in deep learning-powered systems,
e.g., speech recognition [1], [2], object detection [4], [5] and
human activity recognition [6]. We discuss how CrossASR++
performs differential testing to ASR systems as follows.

As shown in Fig. 1, CrossASR++ takes a text corpus as
input and tries to generate a test case for the ASR system
under test (SUT). Specifically, given a piece of text from
the corpus, it first employs a TTS system to synthesize an
audio file from the text. The generated audio file is then fed
to all ASR systems inside CrossASR++ (SUT and ASR1

to ASRm in Fig. 1). The tool cross-references the outputs
of these ASR systems and tags the synthesized audio-text
pair as a valid test case if at least one of the ASR systems
can successfully transcribe the audio (i.e., each word in the
transcription matches each corresponding word in the input
text). A valid test case can be either a failed test case or a
successful test case. If the SUT transcription is different from
the input text, it means that CrossASR++ uncovers a failed test
case for the SUT. Otherwise, a successful test case is found.
We take the audio-text pair as an indeterminable test case if
none of them can successfully transcribe the audio.

Software testing is usually constrained by time and resource
limits. Thus, CrossASR++ selects texts from the corpus strate-
gically to generate test cases more efficiently. CrossASR++
trains a failure estimator, which can estimate the probability
of a piece of text leading to a failed test case. The failure
estimator is a fine-tuned BERT-based classifier with a softmax
layer that outputs the probability of an input text being failed,
successful and indeterminable test cases. CrossASR++ runs
in multiple iterations: in each iteration, it continuously selects
texts from the corpus and processes them before a timeout. At
the start of each iteration (except the first one), it trains the
failure estimator with test cases found so far and estimates the
probabilities of texts to be failed test cases. Then, CrossASR++
ranks texts according to their probability in descending order
and gives higher priority to the texts with a higher rank. By



doing so, CrossASR++ can uncover more failures in ASR
systems before the timeout.

B. Improving ASR Systems

Now, we introduce how the evolutionary differential testing
leverages the generated test cases in two aspects.

1) Improving the ASR System Under Test: When software
systems are shown to have bugs, programmers or automated
program repair tools fix bugs to enhance software quality, e.g.,
by patching conventional software systems or retraining DL
models. In this process, both successful and failed test cases
are essential materials to improve the performance of software
systems. CrossASR++ runs iteratively, and in each iteration,
it generates new test cases for the SUT. We describe how to
leverage the generated test cases to evolve the SUT as follows.

We use SUT0 to denote the initial SUT where CrossASR++
generates test cases for it. CrossASR++ runs in multiple
iterations. We use si and fi to represent the successful and
failed test cases generated in the ith iteration, respectively. Si

is all the successful test cases generated by CrossASR++ so
far (i.e., Si = ∪i

n=1sn). Fi is all the failed test cases generated
until the ith iteration except the first iteration. Mathematically
speaking, Fi = ∪i

n=2fn. We separate f1 for the evaluation
purpose. At the end of the ith iteration, we fine-tune the current
model SUTi−1 on Si ∪ Fi to achieve a new model SUTi.

We choose to fine-tune an existing model rather than
retraining one, mainly because retraining an accurate ASR
system requires a large amount of data, while fine-tuning can
quickly improve the model performance on the new dataset
by leveraging the information captured in pre-trained models.

2) Improving CrossASR++: Asyrofi et al. [2] have shown
that CrossASR++ is self-improvable: its ability in uncovering
failed test cases can be boosted by utilizing better ASR
systems for cross-referencing. The intuition is that better
ASRs systems can recognize more audios correctly to make
some indeterminable test cases become valid ones while the
original successful and failed test cases remain. This fact
motivates us to utilize the generated test cases to improve
the cross-referenced ASR systems inside CrossASR++, with
the expectation to improve CrossASR++ itself (in terms of
its ability to identify more failed test cases for the SUT). We
describe the processes as follows.

As an automated testing tool, the original CrossASR++ only
stores the test cases generated for the SUT (test case database

1 in Fig. 1). To make the cross-referenced ASR systems
able to evolve as well, we enable CrossASR++ to record both
failed and successful test cases for these ASR systems inside
it. Recording these test cases introduces not much overhead to
our system since we do not need to query ASR systems with
audio files again. As shown in Fig. 2, it creates the test case
database 2 that stores the test cases generated for cross-
referenced ASR systems in each iteration. Then, it utilizes
these test cases to fine-tune the cross-referenced ASR systems
in the same way as we evolve an SUT.

III. EXPERIMENTS

In this section, we describe the dataset and experimental
settings used to perform our empirical study. We then present
research questions and findings. We end this section by dis-
cussing threats to validity.

A. Dataset

We use the Europarl dataset, the same dataset used to
evaluate CrossASR++ [2]. The Europarl dataset is a corpus
of parallel texts in 11 languages from the proceedings of the
European Parliament. We use the English texts that have been
collected by CrossASR++’s authors and shared on their project
repository1. It contains 20,000 texts that are randomly picked
from 2,398,750 texts after data cleaning.

B. Experimental Settings

In our experiments, we choose the same TTS system and
5 ASR systems used to evaluate CrossASR++ in [2]. The
TTS system is ResponsiveVoice 2. The 5 ASR systems are
DeepSpeech 3, DeepSpeech2 4, Wav2Letter++ 5, Wav2Vec2 6,
and Wit 7,. We fine-tune one ASR system (DeepSpeech) in this
preliminary exploration. We choose to fine-tune DeepSpeech
mainly because of the availability of its pre-trained model8 and
the feasibility of fine-tuning the model (e.g., well-maintained
documentation and tutorial). For other hyperparameter set-
tings, we use the best settings reported in [2], i.e., 1-hour
timeout for each iteration, setting the text batch size to 1, 200,
and utilizing Facebook BART-base [7] as the failure estimator.

C. Preliminary Evaluation

We investigate the usefulness of the automatically generated
test cases by answering the following research questions.

RQ1. Can the test cases generated by differential testing be
leveraged to improve an ASR system under test?
Experiment Design. In this research question, we run
CrossASR++ using the procedure explained in Section II-B.
We fine-tune the ASR system under test (SUT) using generated
test cases. We investigate whether the performance of the fine-
tuned SUT is better when more iterations are performed. We
use DeepSpeech as the SUT. We evaluate the performance of
the evolved SUT using 2 metrics, i.e., the number of failed
test cases found and the word error rate (WER). For the first
evaluation, we run original CrossASR++ and CrossASR++ by
evolving the SUT in 5 iterations. We measure the number
of failed test cases found in a static SUT (non-evolving SUT
from CrossASR++) and an evolved SUT. We then calculate the
reduction of the number of failed test cases after evolution.

1https://github.com/soarsmu/CrossASRplus
2https://responsivevoice.org/
3https://github.com/mozilla/DeepSpeech
4https://github.com/PaddlePaddle/DeepSpeech
5https://github.com/flashlight/wav2letter
6https://huggingface.co/facebook/wav2vec2-base
7https://wit.ai/
8https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3



Fig. 2. The performance of the SUT. The blue line with circle markers
represents the WER changes of the evolved SUT over time. The green line
with square markers represents the number of failed test cases found by the
evolved SUT. The red line with triangle markers represents the number of
failed test cases found by the static SUT.

For the second evaluation, the WER is the most common
metric to evaluate the performance of ASR systems. The
word sequence predicted by an ASR system is aligned with
a reference transcription. The number of errors from the
comparison is calculated as the sum of insertions (I), deletions
(D), and substitutions (S) divided by the total words in the
reference transcription (N). The WER is computed as follows:

WER =
I +D + S

N

We measure the WER of the evolved SUT on a hold-out test
set. This test set is obtained by taking audio-text pairs from
the failed test cases obtained after running the first iteration
of CrossASR++. It should be noticed that this test set is
not included in the training set of the SUT as explained in
Section II-B. We record the change of the WER for each
iteration. As a baseline, we also compare the best WER of
the evolved SUT with the WER of the static SUT.
Result. Figure 2 shows the performance of the SUT. The
horizontal axis represents the number of iterations performed.
The left vertical axis represents the WER of the SUT. The
right vertical axis represents the number of failed test cases
found in the SUT. The red line with triangle markers and the
green line with the square markers represent the static and
evolved SUT, respectively. In the second iteration, they have
the same number of failed test cases because the evolved SUT
is not evolved yet. Since the failed test cases found in the first
iteration are gathered as test set (see Section II-B), it is still
using the original SUT when running the second iteration.
By observing the number of failed test cases found after the
second iteration, the evolved SUT has fewer failed test cases
than the static SUT. The number of failed test cases found
decreases from 399 to 296, which is a 25.81% reduction. It
points out that the evolved SUT has better performance.

The blue line with circle markers represents the WER
changes of the evolved SUT over the iterations. A low WER
means the ASR system has low errors when recognizing
the audios. The WER of the evolved SUT decreases as the

Fig. 3. The number of failed test cases uncovered by the static CrossASR++
and the evolved CrossASR++ in 4 ASR systems. The red dashed bar represents
the original CrossASR++. The green dotted bar represents the CrossASR++
by evolving one of the cross-referenced ASR systems.

number of iterations increases. It indicates that the evolved
SUT successfully learns from the valid test cases. In addition,
the WER of the evolved SUT is 4.33%, which surpasses the
WER of the static SUT (7.99%). The evolution corresponds
to a 45.81% 9 relative improvement of the WER. Overall, it
demonstrates that fine-tuning using valid test cases improves
the performance of the ASR system under test.

Answers to RQ1: By fine-tuning the ASR system
under test using generated test cases, the number of
failed test cases uncovered decreases by 25.81% and
the WER decreases by 45.81%.

RQ2. Can the generated test cases be leveraged to improve
the performance of CrossASR++?
Experiment Design. In this research question, we want to in-
vestigate whether fine-tuning one of the cross-referenced ASR
systems using generated test cases can boost the performance
of CrossASR++ to uncover failed test cases. We compare the
number of failed test cases found by original CrossASR++
with the number of failed test cases found by CrossASR++ by
evolving one of the cross-referenced ASR systems. For simpli-
fication, we call the first as a static CrossASR++ and the sec-
ond as an evolved CrossASR++. For the evolved CrossASR++,
we continuously evolve DeepSpeech and always utilize Deep-
Speech as one of the ASR systems used for cross-referencing.
We have 4 other ASR systems, i.e., Wav2Vec, DeepSpeech2,
Wav2letter, and Wit. We run the static CrossASR++ for 4
times, i.e., by using different ASR systems as SUT for each.
We also run the evolved CrossASR++ for 4 times. We record
the number of failed test cases found by the static and the
evolved CrossASR++ in 4 ASR systems when each of them
is used as the SUT.
Result. Figure 3 presents the number of failed test cases found
by the static and evolved CrossASR++ in the 4 ASR systems.
The red dashed bars and the green dotted bars show the
number of failed test cases revealed by the static and evolved
CrossASR++, respectively. The horizontal axis shows the ASR

9((7.99− 4.33)/7.99)× 100%



systems used. The vertical axis shows the number of failed test
cases found in each ASR system.

By comparing the number of failed test cases found by the
static and evolved CrossASR++ head-to-head, it is clear that
the evolved CrossASR++ uncovers more failed test cases than
the static one for each ASR system. The numbers of failed test
cases found in Wav2Vec2, DeepSpeech2, Wav2letter, and Wit
increase by 5.70% (298 to 315), 7.25% (276 to 296), 3.93%
(509 to 529), and 1.52% (1, 119 to 1, 136), respectively.

Answers to RQ2: By fine-tuning one of the cross-
referenced ASR systems using generated test cases, the
number of failed test cases found by CrossASR++ in
Wav2Vec, DeepSpeech2, Wav2letter, and Wit increases
by 5.70%, 7.25%, 3.93% and 1.52%, respectively.

D. Threats to Validity

Threat to internal validity concerns factors that may bias our
results. The failure estimator’s ability in predicting failed test
cases can affect answers to RQ2. CrossASR++ may process
different texts because the estimator prioritizes different texts
in each iteration. To investigate exactly the effect of the ASR
evolution for turning indeterminable test cases into valid test
cases, we ensure that the texts processed by the evolved
CrossASR++ are the same as the ones processed by the static
CrossASR++. Thus, we save the texts processed by the static
CrossASR++ and process them on the evolved CrossASR++.

Threat to external validity concerns the generalizability of
our findings. We only fine-tune one of the ASR systems when
evaluating the RQ2. We currently want to focus on analyzing
our idea by changing only one ASR system and observing its
impact. We choose DeepSpeech as the fine-tuned ASR system
because of its reputation, pre-trained model availability, and
project documentation clarity as mentioned in Section III-B.
We plan to extend our empirical study by evolving other ASR
systems in the future.

IV. RELATED WORK

Test Case Generation for ASR systems. DeepCruiser [8]
generates test cases using metamorphic transformations guided
by coverage criteria. CrossASR++ [2], the successor of
CrossASR [1], is the most recent work that uncovers erroneous
behaviors in ASR systems using the differential testing. How-
ever, they only generate test cases in ASR systems without
further action on utilizing these test cases to improve the
ASR systems. Our empirical study investigates whether we can
leverage the generated test cases to improve the ASR systems.
Repairing (Deep Learning) DL systems. Several works
propose repairing techniques when failure cases are found.
DeepXplore [4] adopts differential testing to reveal failures
cases and repairs DNN models in hand-written digit classifica-
tion by augmenting failure cases into training data. SENSEI [9]
improves the robust generalization of classifiers by re-training
the models using generated test cases. DeepRepair [10] pro-
poses a style transfer repairing method to learn and introduce
the unknown failure patterns into the training data via data

augmentation. Apricot [11] aims to repair DL systems itera-
tively through a weight-adaptation method. To the best of our
knowledge, the previous works repair failure cases in image-
related tasks. We are the first that explore the potential usage
of generated test cases in repairing ASR systems.

V. CONCLUSION AND FUTURE WORK

This paper explores the idea of evolutionary differential
testing, which uses the test cases generated by differential
testing tools to improve both the SUT and the test case
generation tool. We empirically show that by fine-tuning the
target ASR using generated test cases, the number of failed
test cases uncovered decreases by 25.81%, and the WER
decreases by 45.81%. In addition, the generated test cases
can improve the performance of CrossASR++ in revealing
more failed test cases in ASR systems. By fine-tuning one of
the cross-referenced ASR systems with generated test cases,
the number of failed test cases found by CrossASR++ in
Wav2Vec, DeepSpeech2, Wav2letter, and Wit increases by
5.70%, 7.25%, 3.93% and 1.52%, respectively. In the future,
we plan to observe and analyze the relative performance of
the ASR systems when all of them are evolving. We also plan
to investigate better ways to generate effective test cases that
can improve the reliability of ASR systems.
Replication Package. The source code for our empirical study
is available at https://github.com/soarsmu/ASREvolve.
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