AUSearch: Accurate API Usage Search in GitHub
Repositories with Type Resolution

Muhammad Hilmi Asyrofi, Ferdian Thung, David Lo, and Lingxiao Jiang
Singapore Management University
Email: {mhilmia, ferdianthung, davidlo, Ixjiang} @smu.edu.sg

Abstract—Nowadays, developers use APIs to implement their
applications. To know how to use an API, developers may search
for code examples that use the API in repositories such as
GitHub. Although code search engines have been developed to
help developers perform such search, these engines typically
only accept a query containing the description of the task that
needs to be implemented or the names of the APIs that the
developer wants to use without the capability for the developer
to specify particular search constraints, such as the class and
parameter types that the relevant API should take. These engines
are not designed for cases when the specific API and its types
to search are known and the developers want code examples
that show how the specific API is used, and therefore, their
search results are often too inaccurate. In this work, we propose
a tool, named AUSearch, to fill this gap. Given an API query that
allows type constraints, AUSearch finds code examples in GitHub
that contain usages of the specific APIs in the query. AUSearch
performs type resolutions to ensure that the API usages found in
the returned files are indeed invocations of the APIs specified in
the query and highlights the relevant lines of code in the files for
easier reference. We show that AUSearch is much more accurate
than GitHub Code Search.' A video demonstrating our tool is
available from https://youtu.be/DKiGal5bSkU.

Index Terms—API usage, code search, type resolution, GitHub

I. INTRODUCTION

Modern software development leverages APIs to build soft-
ware applications. APIs provide common functionalities to
ease software development. Developers may learn how to use
an API by reading from the API documentation and tutorials,
looking at questions and answers from StackOverflow, or
searching for code examples from repositories such as GitHub.

Searching for code examples is among the most frequent
activity in software development [11]-[13]. Developers have
been found to prefer searching for code examples when they
have problems in programming [2], [3]. It allows them to learn
directly from pieces of code that should be working and may
be able to reuse the relevant code snippets with little to no
modification.

To find code examples, one usually uses a code search en-
gine. Code search engines typically accept a textual description
of a programming task that needs to be completed as the
query and returns code examples in the order of relevance
to the query. Popular search engines such as GitHub Code
Search simply performs exact keyword matches that return any
code containing the names of the APIs specified in the query.

Uhttps://github.com/search

These kinds of search engines are not optimized for searching
examples of a particular target API with a particular type
signature. Performing such search may return many irrelevant
code examples that do not actually contain the target API, but
rather identifiers whose names match with keywords extracted
from the name of the target API, without considering the class
and parameter type constraints of the API. Therefore, there
is a need for a search engine that can return code examples
containing the actual uses of the target API. This kind of
search engines requires type resolution. Without resolution,
the search engines would be unable to differentiate between
APIs with the same method name but different class and/or
parameters.

A common use case for the above kind of search engines is
when developers have in mind the target API but want to know
how it can be used. For example, a post in StackOveflow?
suggests the API to replace a deprecated API but none of the
answers satisfies the questioner’s needs on knowing how to use
the API. The questioner can instead use our proposed search
engine to look for code examples that actually use the APL

The closest existing tool that may be used to find code
examples following the above requirement is Boa [4]. Boa
is a domain-specific language and infrastructure that eases
mining software repositories. Boa supports Abstract Syntaxt
Tree (AST) traversal that can be used to find a method
with a certain name. However, since Boa does not support
type resolution, it is not possible to know the type of the
object variable an invoked method belongs to or the types of
arguments of the method. As such, it is difficult for Boa to
accurately find the code examples that contain the actual uses
of the target APL

In this work, we develop a tool named AUSearch to find
API usages for a given API query. AUSearch accepts one or
multiple API signatures as input and returns the files in GitHub
that contain all of the specified API signatures. AUSearch
is built on top of GitHub Code Search and overcomes the
limitations of GitHub Code Search that only considers textual
query and matches any text (even comments) inside a file.
AUSearch is also designed to reduce the time required to
get the first relevant file from GitHub that contains uses of
the specified APIs. Currently, AUSearch only supports Java
programming language.

Zhttps://stackoverflow.com/questions/35647821/
android-notification-addaction-deprecated

We have evaluated AUSearch considering the relevancy of
its search results and its user-friendliness. We demonstrate that
AUSearch can find relevant API usages by filtering out irrele-
vant GitHub Code Search results. We demonstrate AUSearch’s
user-friendliness by comparing its result against GitHub Code
Search result. We have also released the implementation of
AUSearch.?

II. API QUERY DEFINITION

Our goal is to find files that contain uses of all specified
APIs in a query and highlight the lines of code surrounding the
APT uses. To identify such usages accurately, we perform type
resolution. Without resolving types, the process of matching
API method invocation would be imprecise as the matched
API method invocation may correspond to a method with a
wrong type and/or use parameters of wrong types.

AUSearch accepts inputs that follow the following grammar:

Query : mSignatureList

mSignatureList : mSignature {& mSignature}

mSignature : class#method(paramList)

paramList : param {, param}

In the above grammar, the Query is expressed as a
list of method signatures mSignatureList. Each signature
mSignature in mSignatureList consists of class, method,
and paramList. class represents a fully qualified type* of a
class. method represents the name of the method that belongs
to class. paramList is a list of parameters for the method.
Each param in paramlList is the fully qualified type of a
method parameter.

As a concrete example, developers may want to
find code examples that use the vibrate method
that belongs to android.os.Vibrator class and ac-
cepts parameters of types long[] (first parameter) and
int (second parameter). In this case, the query is
android.os.Vibrator#vibrate (long[], int).

III. AUSEARCH
A. Architecture

The architecture of AUSearch is shown in Figure 1. AUSe-
arch accepts as input a User Query following the API usage
query definition provided in Section II and returns Matched
Files, which are source code files that have been checked
to contain invocations of methods that match with the User
Query. AUSearch consists of four main components: Query
Processor, Type Resolver, Package Analyzer, and Filtering
Module. AUSearch has two main data sources: GitHub Code
Search API and Maven Package Search API.

Query Processor takes User Query as input and returns
Java Files that are obtained from GitHub Code Search API
as output. Java Files are then input to Package Analyzer to
retrieve Required Jars that contain the Imported Packages in

3https://github.com/mhilmiasyrofi/search-visualization
4In Java, this refers to a package name followed by a class name

Java Files. Required Jars along with Java Files and User
Query are input to Type Resolver that resolves the types of
variables inside Java Files and returns Resolved Java Files as
the result. Filtering Module takes these Resolved Java Files
and User Query as input and returns Matched Files.

The details of each main component are as follows.

Github Query

P——
File URL

Query

Processor

Github Code Search API

Java Files

Filtering
Module

Matched
Files

Type Resolver

Resolved
Java Files

Required Jars

Jars

Y

Package

Maven Package Search APl
< Analyzer

Imported Packages
Fig. 1. Architecture of AUSearch

1) Query Processor: Query Processor breaks down User
Query to tokens that constitutes the User Query by removing
all symbols including "#”, &, ., ”(”, and ”)” from the
User Query to make a GitHub Query. It then sends the Github
Query to GitHub Code Search API and receives File URL,
which is URL of the source code file in GitHub that matches
with the GitHub Query. Query Processor downloads the files
and returns them as Java Files. Query Processor processes
Java Files one by one and send them to the next components
in the pipeline (i.e., Package Analyzer and Type Resolver).

2) Package Analyzer: Given Java Files, Package Analyzer
parses the file and collects packages that are required by
the file. These packages are then input as queries to Maven
Package Search API. Maven Package Search API returns the
names of jars (i.e., a collection of Java files that are packaged
into a single file) containing the packages. As multiple jars
may contain the same package, Maven Package Search API
returns a ranked list of jars sorted according to Maven Package
Search API internal algorithm. Package Analyzer simply picks
the first jar in this order. Package Analyzer implements a
simple caching mechanism by checking whether the jar exists
in the local storage. If the jar exists, Package Analyzer does
not download the jar as it has been downloaded before. If
the jar does not exist, Package Analyzer downloads the jar.
Package Analyzer then returns Jars that contains the imported
packages inside the Java file.

3) Type Resolver: Type Resolver accepts as input Java
Files, User Query, Jars containing the imported packages
inside the Java Files. Type Resolver parses the Java Files into
an Abstract Syntax Tree (AST). Type Resolver then traverses
the tree to find invocations of methods in Java Files whose
fully qualified names are the same with the methods specified

in the User Query. For each of such method invocations, using
information from the Jars, Type Resolver uses javaparser® to
resolve the type of the class the method belongs to and types
of all method arguments. If all the types can be resolved,
Type Resolver returns the corresponding files among the set of
Resolved Java Files. Resolved Java Files contain line numbers
indicating the API usage locations.

4) Filtering Module: Filtering Module accepts as input
Resolved Java Files and User Query. Filtering Module checks
whether the resolved type of the class the method belongs to
exactly matches the type in the User Query. It also checks
whether the resolved types of the arguments exactly match
the types of the parameters in the query. If both checks result
in a successful match for each API specified in User Query
, Filtering Module puts the corresponding file in the list of
Matched Files. Otherwise, it discards the file. Matched Files
are shown to users with the lines containing the API usages
highlighted.

B. User Interface

The user interface of AUSearch is shown in Figure 2. Users
type a query insides a text box following the format specified
in Section II. AUSearch follows the process described in
Section III-A and returns Matched Files. In Figure 2, we are
asking for set TextAppearance method, which belongs to
android.widget .TextView and has parameters of types
android.content.Context and int. The snippets of
matched files are shown below the query text box. A snippet
shows a portion of a matched file that contains the queried
API usage, in which the API usage is highlighted in yellow.
The snippet also contains the file location in GitHub, which
is a combination of the repository address containing the file
and the file path from the root of the repository. In Figure 2,
the repository address is fireberlin/tinytimetracker and the file
path is android/src/com/fireberlin/tinytimetracker/ui/LogDaily-
SummaryView.java. Clicking on the file location would bring
users to the GitHub page for the file while clicking on the
highlighted line would bring users to the same page with the
corresponding line highlighted.

IV. USAGE SCENARIOS

A. Effective Search with Multiple Methods Sharing the Same
Name

When searching for Java code examples, AUSearch is
especially useful for finding files containing API usages in
which the API has the same method name with other APIs that
are either from the same class (due to method overloading) or
different classes. In such case, developers would find it harder
to identify whether a method with the same name in the file
is the one they are looking for or not. Without AUSearch,
developers would need to manually check whether the type
of object and types of arguments are actually match with the
API they are looking for.

Shttps://javaparser.org/

AUSearch

Find java api usage example here!

android.widget.TextView#setTextAppearance(android.content.Context, int)

\@) firebirdberlin/tinytimetracker
android/src/com/firebirdberlin/tinytimetracker/ui/LogDailySummaryView.java

102

103 @SuppressWarnings("deprecation")

104 private void setTextAppearanceDeprecated(TextView tv, int size) {
105 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M) {

106 tv.setTextAppearance(mContext, size);

107 }

108

109 }

110 private void addDividerAbove() {

Fig. 2. User Interface of AUSearch

Suppose we look for usages of
addAction method that belongs to
android.app.Notification.Builder class with a
parameter type android.app.Notification.Action.
The method is overloaded by another method with three
parameter types int, java.lang.CharSequence, and
android.app.PendingIntent. AUSearch produces a
result as in Figure 3. On the other hand, searching for the
same method in GitHub puts the relevant method in the 44"
position, which means that developers need to sift through a
lot of irrelevant results before finding code snippet containing
the API usage. Thus, AUSearch can save much developer
time in looking through search results.

livodeu/FreeHamburger
app/src/main/java/de/freehamburger/BootReceiver.java

63 .bigText(app.getString(R.string.msg_background_active, String.va
64);

66 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

67 builder.addAction(new Notification.Action.Builder(

68 Icon.createWithResource(app, R.drawable.ic_notification),
69 app.getString(R.string.action_open_app),

70 UpdateJobService.makeIntentForMainActivity(app, null))

71 .build());

Fig. 3. AUSearch Result

B. Accurate Highlighting of Lines containing Method Invoca-
tions

AUSearch helps developers investigate returned code
snippets faster by highlighting relevant lines of codes, i.e.,
lines of codes that contain the usages of specified APIs.
For this reason, AUSearch is a better choice than GitHub
Code Search for user friendliness. GitHub Code Search result
would highlight lines of codes that are a match with tokens
appearing in a given textual query. For example, suppose that
we want to find API usages for addAction method, which
belongs to android.app.Notification.Builder
object and has three parameters of types

int, java.lang.CharSequence, and
android.app.PendingIntent. GitHub Code Search
returns results as shown in Figure 4. Notice that since GitHub
Code Search highlights lines of code that contain tokens in
the query such as android, app, and Notification.
These lines of code may include import statements and class
declaration, which clearly do not contain API usage.

AUSearch provides better highlighting capability to ease the
task of finding API usages. Figure 5 shows the same result
file as in Figure 4 but highlighted by AUSearch. Notice that
the lines of code highlighted by AUSearch actually contain
the API usage that we are searching for. This is possible
since AUSearch performs type resolution and therefore is
capable of highlighting the lines of code with actual API
usage. Developers’ time are saved because they do not need
to manually check the file to find the lines containing the API
usage, like what they would need to do if they used GitHub
Code Search.

1: Mi-Walkie-Talkie-by-Darkhorse/Mi-Walkie-Talkie-Plus
original-java/android/support/v4/app/NotificationCompatJellybean.java
import android.app.Motification.BigTextStyle;
import android.app.Notification.InboxStyle;
import android.app.PendingIntent;
import andreid.content.Context;

public static class Builder implements NotificationBuilderWithActions,

NotificationBuilderWithBuilderAccessor {
private android.app.Notification.Builder b;

Fig. 4. Highlighted File in GitHub Code Search Result

L I " Mi-Walkie-Talkie-by-Darkhorse/Mi-Walkie-Talkie-Plus
il original-java/android/support/v4/app/NotificationCompatJellybean.java

204 return factory.build(i, charSequence, pendingIntent, bundle, remoteInputArr, z)
205 }

206

207 public static Bundle writeActionAndGetExtras(android.app.Notification.Builder build
208 builder.addAction(action.getIcon(), action.getTitle(), action.getActionIntent()
209 Bundle bundle = new Bundle(action.getExtras());

210 if (action.getRemoteInputs() != null) {

211 bundle.putParcelableArray("android.support.remoteInputs", RemoteInputCompat.

212 }

Fig. 5. Highlighted File in AUSearch Result

V. EVALUATION

We evaluate AUSearch in terms of its capability to filter
out irrelevant code examples from GitHub Code Search and
highlight relevant lines of codes.

To evaluate its capability to filter out irrelevant code exam-
ples, we count the number of code example files that needs to
be investigated to reach the first relevant file in the list of files
returned. To count this, we randomly select 11 Android APT’s
queries from Fazzini et al. work [5] as shown in Table 1. These
queries simulate developers that want to know how to replace
deprecated APIs by learning how to use both the deprecated
and replacement APIs. On average, we found that 3.1 files
need to be investigated to reach the first relevant file if we
were to use GitHub Code Search instead of AUSearch while
the first file returned by AUSearch is always relevant.

TABLE I
SELECTED API QUERIES

API Query

Notification.Builder#addAction(int, CharSequence, PendingIntent)
Notification.Builder#fadd Action(Action)
TextView#setTextAppearance(Context, int)

Html#fromHtmlI(String)

Vibrator#vibrate(long)

Vibrator#vibrate(VibrationEffect)

Vibrator#vibrate(VibrationEffect, AudioAttributes)
LocationManager#removeGpsStatusListener(GpsStatus.Listener)
LocationManager#addGpsStatusListener(GpsStatus.Listener)
AudioManager#abandonAudioFocus(OnAudioFocusChangeListener)
AudioManager#frequestAudioFocus(OnAudioFocusChangeListener, int, int)

To evaluate its capability to highlight relevant lines of code
in a code snippet, we compare the accuracy of the highlighted
lines between AUSearch and GitHub Code Search. We define
highlight accuracy as follows: Accuracy = %, where #H
is the number of highlighted lines in the code snippet and
#TH is the number of highlighted lines in the code snippet
that actually contain the target API usage.

We measure average highlight accuracy by using the same
queries as above and compute the highlight accuracy for each
combination of query and tool (i.e., AUSearch or GitHub Code
Search). We use the first code snippet in AUSearch result for
comparison. We found that GitHub Code Search’s average
highlight accuracy is 0.09 while AUSearch average highlight
accuracy is 1.

VI. DISCUSSION

We see that AUSearch is much more accurate than GitHub
Code Search because it filters out irrelevant results with type
resolution and highlights relevant lines of code.

In the research community, Boa [4] is a popular tool to
mine software repositories. However, it cannot be used for the
use case of finding API usage, mainly because it does not
support type resolution. Without type resolution, Boa would
not be able to differentiate methods with the same name and
number of parameters but belong to different objects. It would
also not be able to differentiate methods with the same name
and number of parameters, but the parameters are actually of
different types than the ones that we are searching for.

Beside type resolution support, AUSearch is better for
API usage than Boa since it integrates directly with GitHub
Code Search. GitHub Code Search indexes the most recent
repositories in GitHub. Thus, AUSearch can get the most up-
to-date result. On the other hand, Boa’s repositories are not
as up-to-date. In fact, the number of Boa’s repositories never
increases since 2015.% Another disadvantage of using Boa for
API usage search is that we need to learn a new programming
language before we can actually perform the API usage search.
AUSearch is superior in this aspect as we can directly perform
the search without a relatively high learning curve. Moreover,
Boa is run in a centralized infrastructure while AUSearch can
be run anywhere by downloading and running our code — it

Shttp://boa.cs.iastate.edu/stats/index.php

does not require one to download large indexed source code
data.

Although AUSearch currently supports only Java program-
ming language, the same idea can be extended to other
programming languages. The extension would depend on the
existence and the maturity of the type resolution tool in the
corresponding programming language.

VII. RELATED WORK

Code search is an active research area in software engi-
neering [1], [6]-[10], [15]. Krugler [9] simply treated code
as text and applied web search algorithm for code search.
Hill et al. [8] improved code search by reformulating queries
according to the position of the query words and the query
semantic role. Wang et al. [14] proposed to incorporate user
feedback to improve the relevancy of code search results.
Bajracharya et al. [1] proposed a code search engine named
Sourcerer that combines the texts from the program with the
structural information of the program to perform the code
search. Lv et al. [10] proposed CodeHow, a code search engine
that expands the natural-language query by adding potentially
relevant APIs. Similarly, Zhang et al. [15] expands the natural-
language query by adding identifiers that are semantically
similar with the query. Gu et al. [6] proposed DeepCS, a
deep learning model for code search that works by embed-
ding method in programming language and query in natural
language together. DeepCS optimizes the similarity of a query
embedding with its relevant methods’ embeddings.

Different from the above work on code search, our tool
targets different use case. Instead of searching for code exam-
ples to implement a certain task, our tool targets a use case in
which we want to search code examples that contain certain
APIs’ usages in order to learn from them. Thus, our work
complement the above work on code search engine and fill
the gap on this use case.

VIII. CONCLUSION AND FUTURE WORK

Finding code examples is one of the most common task in
software development. To find them, developers can make use
of code search engine. However, code search engine usually
accepts as input a description of programming task and returns
pieces of codes that implement the task. In this work, we are
interested in another use case in which developers know what
API to look for and want to find code examples for this APIL. To
the best of our knowledge, no existing tool had been designed
to address this use case satisfyingly. Existing tools such as
GitHub Code Search and Boa [4] may return irrelevant code
examples and not always easy to work with. GitHub Code
Search may highlight lines of codes that are not related to
API usages. On the other hand, Boa requires users to write
programs to be able to find API usages.

In this work, we develop AUSearch to overcome the above
limitations of existing tools. AUSearch performs type res-
olution to ensure that it always return only relevant code
examples, i.e., code examples that actually contain the API
usage that the users are looking for. Using the resolved

type, AUSearch is also capable of highlighting lines of codes
containing the API usage, making it easier to investigate the
returned code examples. In the future, we plan to add supports
for other programming languages to AUSearch and use AUSe-
arch for downstream tasks (e.g., automated API usage update,
enriching API documentation with code examples, etc.).

REFERENCES

[1] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,
Pierre Baldi, and Cristina Lopes. Sourcerer: a search engine for open
source code supporting structure-based search. In Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pages 681-682. ACM, 2006.

[2] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer.
Example-centric programming: integrating web search into the develop-
ment environment. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 513-522. ACM, 2010.

[3] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R
Klemmer. Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1589-1598.
ACM, 2009.

[4] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen.
Boa: A language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In Proceedings of the 2013 International Conference
on Software Engineering, pages 422-431. IEEE Press, 2013.

[5] Mattia Fazzini, Qi Xin, and Alessandro Orso. Automated api-usage
update for android apps. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 204—
215. ACM, 2019.

[6] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search.
In IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 933-944. IEEE, 2018.

[71 Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea
De Lucia, and Tim Menzies. Automatic query reformulations for
text retrieval in software engineering. In Proceedings of the 2013
International Conference on Software Engineering, pages 842-851.
IEEE Press, 2013.

[8] Emily Hill, Lori Pollock, and K Vijay-Shanker. Improving source code
search with natural language phrasal representations of method signa-
tures. In Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, pages 524-527. IEEE Computer
Society, 2011.

[9]1 Ken Krugler. Krugle code search architecture. In Finding Source Code
on the Web for Remix and Reuse, pages 103—120. Springer, 2013.

[10] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei
Zhang, and Jianjun Zhao. Codehow: Effective code search based on api
understanding and extended boolean model (e). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 260-270. IEEE, 2015.

[11] Collin McMillan, Negar Hariri, Denys Poshyvanyk, Jane Cleland-Huang,
and Bamshad Mobasher. Recommending source code for use in rapid
software prototypes. In Proceedings of the 34th International Conference
on Software Engineering, pages 848—858. IEEE Press, 2012.

[12] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. How
developers search for code: a case study. In Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, pages 191-201.
ACM, 2015.

[13] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas An-
quetil. An examination of software engineering work practices. In
CASCON First Decade High Impact Papers, pages 174—188. IBM Corp.,
2010.

[14] Shaowei Wang, David Lo, and Lingxiao Jiang. Active code search:
incorporating user feedback to improve code search relevance. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pages 677-682. ACM, 2014.

[15] Feng Zhang, Haoran Niu, Iman Keivanloo, and Ying Zou. Expanding
queries for code search using semantically related api class-names. /[EEE
Transactions on Software Engineering, 44(11):1070-1082, 2017.

