JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

BiasFinder: Metamorphic Test Generation to
Uncover Bias for Sentiment Analysis Systems

Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang, Ferdian Thung and David Lo

Abstract—Artificial intelligence systems, such as Sentiment Analysis (SA) systems, typically learn from large amounts of data that
may reflect human bias. Consequently, such systems may exhibit unintended demographic bias against specific characteristics (e.g.,
gender, occupation, country-of-origin, etc.). Such bias manifests in an SA system when it predicts different sentiments for similar texts
that differ only in the characteristic of individuals described. To automatically uncover bias in SA systems, this paper presents
BiasFinder, an approach that can discover biased predictions in SA systems via metamorphic testing. A key feature of BiasFinder is
the automatic curation of suitable templates from any given text inputs, using various Natural Language Processing (NLP) techniques
to identify words that describe demographic characteristics. Next, BiasFinder generates new texts from these templates by mutating
words associated with a class of a characteristic (e.g., gender-specific words such as female names, “she”, “her”). These texts are then
used to tease out bias in an SA system. BiasFinder identifies a bias-uncovering test case (BTC) when an SA system predicts different
sentiments for texts that differ only in words associated with a different class (e.g., male vs. female) of a target characteristic (e.g.,
gender). We evaluate BiasFinder on 10 SA systems and 2 large scale datasets, and the results show that BiasFinder can create more
BTCs than two popular baselines. We also conduct an annotation study and find that human annotators consistently think that test
cases generated by BiasFinder are more fluent than the two baselines.

Index Terms—sentiment analysis, test case generation, metamorphic testing, bias, fairness bug

1 INTRODUCTION

ANY modern software systems employ artificial intel-

ligence (AI) to make decisions. In Al systems, fairness
is considered to be an important non-functional requirement
as bias in Al systems, reflecting discriminatory behavior
towards unprivileged groups, can lead to real-world harms.
To address this requirement, software engineering research
techniques, such as test case generation, have been applied
to detect bias [1]-[5]. This paper investigates sentiment anal-
ysis (SA) systems that can be used to measure the attitudes
and affects in text reviews about an entity, such as a movie
or a news article [6], [7]. We focus on uncovering bias in SA
systems for three reasons:

Firstly, SA has widespread adoption in many do-
mains [8], [9], including politics [10], [11], finance [12]-
[15], business [16], education [17]-[19], and healthcare [20]-
[22]. In the research community, SA continues to be widely
studied [23]-[28]. In the industry, many companies, such
as Microsoft! and Google?, have developed and provided
APIs for software developers to access SA capabilities. This
suggests the prevalence of SA in real-life applications. As a
result, bias in SA systems can have a big impact on society.

Secondly, SA has generalizability to other areas of NLP.
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Some researchers have considered SA to be “mini-NLP” [9],
as research on SA techniques builds on top of a wide range
of topics and tasks in the NLP domain. Cambria et al. [29]
argue that SA is a problem with a composite nature, requir-
ing 15 more fundamental NLP problems to be addressed at
the same time. Therefore, we believe that tackling bias in
SA is a suitable first step that could lead to a more general
approach to detect bias in textual data.

Thirdly, due to the importance of SA systems, there are
many recent research works [5], [30]-[34] that focus solely
on the fairness issues in SA systems. Although these works
are not guaranteed to be fully generalizable to all kinds of
NLP systems, the importance and wide applicability of SA
justify the need of fairness studies that focus on it.

Modern SA systems have outstanding performance on
benchmark datasets, which demonstrates their effectiveness.
In the case of SA, the training data is typically a dataset
of human-written texts that may reflect human bias. SA
systems may, therefore, exhibit bias towards a demographic
characteristic, such as gender [30], [32]. For example, the
sentiment predicted by an SA system may differ for a piece
of text after a perturbation in the text to replace words that
describe a demographic characteristic, e.g., changing “I am
an Asian man” into “I am a black woman” may cause a
predicted sentiment to change from positive to negative,
therefore, showing that the SA system reflects demographic
bias.

Early discovery of bias in SA systems will help to pre-
vent the perpetuation of human bias, and aid to prevent
real-world harms. As a result, existing studies suggest [5],
[30] that SA systems should be tested for fairness (i.e., ex-
posing unintended bias). Researchers define the metamorphic
relationship that a fair SA system should have and utilize



metamorphic testing to uncover bias. More specifically, a fair
SA system should produce the same result for two pieces of
texts that only differ in sensitive features (e.g., demographic
characteristics like gender). Prior studies typically rely on a
small number of templates to generate short texts and check
whether the above metamorphic relationship is satisfied. For
example, Kiritchenko and Mohammad [30] propose EEC,
which generates test cases produced from 11 handcrafted
templates. These test cases help to detect if an SA system
predicts a different sentiment given two texts that differ only
in a single word associated with a different gender or race.

However, these test cases are limited in number and may
not adequately uncover bias in SA systems. Very recently,
SA researchers [9] have noted that “the templates utilized to
create the examples might be too simplistic” and identifying
such bias “might be relatively easy”. They suggest that
“Future work should design more complex cases that cover
a wider range of scenarios.” In this work, our goal is to
address these limitations of handcrafted templates by auto-
matically generating templates that can be used to uncover
bias.

In this paper, we present BiasFinder, a framework that
automatically generates templates and test cases to discover
biased predictions in SA systems. BiasFinder automatically
identifies the words associated to demographic characteris-
tics in given texts and then replaces identified words with
placeholders to transform these texts into templates. Each
template can be used to produce a large number of text
mutants, by filling in placeholders with concrete values
associated with a class (e.g., male vs. female) given a demo-
graphic characteristic (e.g., gender). Using these mutant texts,
BiasFinder then runs the SA system under test, checking if
the metamorphic relationship is satisfied (i.e., an SA system
predicts the same sentiment for two mutants with different
demographic characteristics.)

The key feature of BiasFinder is its automatic identi-
fication and transformation of suitable texts in a corpus
to templates, which allows BiasFinder to produce a large
number of test cases that are varied and realistic compared
to previous approaches [30]. Identifying the suitable texts
to be transformed to templates is challenging. For instance,
all references to an entity should be replaced in a consis-
tent way that does not make the text (e.g., a paragraph)
not fluent. An example is shown in Figure 1, in which
all expressions referring to an entity (“Jake”) need to be
updated. The name “Jake” and its references (bolded and
underlined) need to be updated together for the text to
remain fluent. BiasFinder addresses this challenge through
the use of Natural Language Processing (NLP) techniques,
such as coreference resolution and named entity recognition,
to find all words that require modification.

Our framework, BiasFinder, can be instantiated to un-
cover bias in three different demographic characteristics:
gender, occupation, and country-of-origin. We obtained 10
SA models by fine-tuning 5 Transformer-based models on
two popular sentiment analysis datasets: the IMDB movie
review and Twitter Sentiment140 (the IMDB and Twitter
datasets for short in the following parts of the paper). We
compare BiasFinder with two baselines (EEC [30] and MT-
NLP [31]) on the two datasets. We evaluate the effectiveness
of BiasFinder in uncovering bias by measuring the number

Original Text

It seems that Jake with all his knowledge of the great
outdoors didn’t realize the danger! He enters a mine shaft
that’s leaking with dangerous gas!

Mutated Text

It seems that Julia with all her knowledge of the great
outdoors didn’t realize the danger! She enters a mine shaft
that’s leaking with dangerous gas!

Fig. 1. An example of how all references to the same entity has to
be considered when mutating a text to be associated with a different
gender.

of bias-uncovering test cases (BTCs) found. A BTC is a pair

of two text mutants that only differ in sensitive information

(e.g., gender) but are predicted as different sentiments by

an SA system. Our experiments showed that BiasFinder

could uncover more BTCs than two baselines (EEC [30] and

MT-NLP [31]) on two datasets. Additionally, we evaluate

whether the generated texts are fluent by performing a

manual annotation study. The results demonstrate that par-

ticipants consistently consider texts generated by BiasFinder
to be more fluent than texts generated by MT-NLP. The
contributions of our work are as follows:

o We propose BiasFinder, a framework that uncovers bias
in SA systems through the automatic generation of a large
number of realistic test cases given a target characteristic.
The source code of BiasFinder is publicly available®.

« BiasFinder automatically identifies and curates appropri-
ate and realistic texts (of various complexity) and trans-
forms them into templates that can be instantiated to
detect different types of bias. Prior works only consider
a small set of manually-crafted simple templates or focus
on detecting one type of bias.

o We compare BiasFinder with two baselines on IMDB and
Twitter datasets. The results show that BiasFinder can
generate more BTCs, and an annotation study demon-
strates that human annotators consistently consider that
BiasFinder can generate more fluent text mutants.

The rest of this paper is organized as follows. Section 2
introduces the necessary background related to our work.
Section 3 presents BiasFinder. Section 4 elaborates Gender-
BiasFinder, an instantiation of BiasFinder to detect gender
bias. Section 5 briefly discusses instantiations of BiasFinder
for detecting occupation and country-of-origin bias. Sec-
tion 6 describes the results of our experiments, threats to va-
lidity and potential usages of BiasFinder. Section 7 presents
related work. Finally, Section 8 concludes this paper and
describes future work.

2 PRELIMINARIES

This section provides more details of metamorphic testing
for revealing fairness issues (Section 2.1), as well as basic
NLP operations that we use as building blocks of our
proposed approach (Section 2.2).

2.1 Metamorphic Testing for Fairness

Counterfactual fairness is a widely adopted fairness concept
[35]-[38], which is introduced by Kusner et al. who specify

3ht’rps: / / github.com/soarsmu/BiasFinder



TABLE 1
Templates in EEC.

No Template # Sentence
Sentences with emotion words:
1 (person) feels (emotion) 1,200
2 The situation makes (person) feel (emotion) 1,200
3 I made (person) feel (emotion) 1,200
4 (person) made me feel (emotion) 1,200
5 (person) found himself/herself in a/an 1,200
(emotion) situation
6 (person) told us all about the recent (emotion) 1,200
events
7  The conversation with (person) was (emotion) 1,200
Sentences with no emotion words:
8 I saw (person) in the market 60
9  TItalked to (person) yesterday 60
10 (person) goes to the school in our neighborhood 60
11 (person) has two children 60

that “a decision is fair towards an individual if it is the
same in (a) the actual world and (b) a counterfactual world
where the individual belonged to a different demographic
group” [35]. We formalize this counterfactual fairness spec-
ification as a metamorphic relationship.

We first introduce the definitions of fairness and the for-
malisation of metamorphic testing for uncovering fairness
issues in SA systems. An SA system can be abstracted as a
function f : X — Y, which takes a text z € X as input
and produces the sentiment y = f(x) reflected in the input.
We expect a fair SA system not to make predictions that are
based on emotionally irrelevant but sensitive information
(e.g., gender, ethnic groups, countries of origin, etc), which
are called protected features. We use p(z) to denote the
protected features of an input x and n(z) to denote the
non-protected features. The above expectation for a fair
SA system can be formally specified with a metamorphic
relationship:

Vi, x5, n(x;) = n(x;) Ap(z) # ple;) = fla:) = f(z)

where z; and z; are two inputs that share the same non-
protected features (i.e., n(z;) = n(z;)) but differ in sensitive
features (i.e., p(x;) # p(z;)). A fair SA system should make
same prediction for the two inputs, i.e., f(z;) = f(x;). Pairs
of z; and x; that violate the metamorphic relationship are
referred as bias-uncovering test case (BTC).

The Equity Evaluation Corpus (EEC) is a benchmark [30]
that leverages the metamorphic relationship to reveal bias in
SA systems. The EEC consists of 8,640 sentences designed to
reveal gender and race bias. These sentences are constructed
by instantiating placeholders in the templates shown in
Table 1. The placeholders in templates 1-7 can be replaced
with words to produce sentences that lean towards positive
or negative sentiment, while the templates in 8-11 result in
sentences with a neutral sentiment.

Templates in the EEC have two placeholders: (person)
and (emotion). Mutant texts are generated by instantiating
each placeholder with a predefined value. Predefined values
for the placeholder (person) are:

e Common African American female or male first names;

Common European American female or male first
names; taken from Caliskan et al. [39]

e Noun phrases referring to females, such as “my daugh-
ter”; and noun phrases referring to males, such as “my

”

son .

The second placeholder, (emotion), corresponds to four
basic emotions: anger, fear, joy, and sadness. For each emo-
tion, EEC selects five words from Roget’s Thesaurus* with
varying intensities.

Although the EEC has successfully revealed bias in NLP
systems [30], it is limited only to gender and race bias. It
does not explore bias against other demographic informa-
tion (e.g., occupation, etc.) that may also lead to inappro-
priate behavior of SA and other NLP systems. Furthermore,
the templates used to create the text dataset may be too
short and simplistic as argued by Poria et al. [9]. We suggest
that a system that has the capability to automatically create
templates to produce more diverse and complex sentences
can aid in better uncovering bias in SA systems.

2.2 Natural Language Processing (NLP) Techniques

We introduce several NLP techniques used in BiasFinder to
identifier sensitive features and build templates.

2.2.1 Part-of-speech Tagging

Part-of-speech tagging (PoS-tagging) is the process of identi-
fying the part of speech (e.g. noun, verb) that each word in a
text belongs to [40]. An example of PoS-tagging is shown in
Figure 2. In the example, “Maria” is tagged as a proper noun
(PROPN); “has” and “loves” are tagged as verbs (VERB);
and “She” and “him” are tagged as pronouns (PRON).

2.2.2 Named Entity Recognition

Named entity recognition (NER) automatically identifies
named entities in a text and groups them into predefined
categories. Examples of named entities are people, orga-
nizations, occupations, and geographic locations [41]. An
example of NER can be found in Figure 2, where the word
“Maria” is assigned to the “PERSON” category. In this work,
we are mainly interested in the person (for gender and
country-of-origin bias) and occupation (for occupation bias)
categories.

2.2.3 Coreference Resolution

Finding all expressions that refer to the same entity in
a text is known as coreference resolution [42]. Linking
such expressions is useful for many NLP tasks where the
correct interpretation of a piece of text has to be derived
(e.g. document summarization, question answering). Coref-
erence resolution only links expressions together, and does
not identify the types of the referenced entities, which is
done through NER. An example of coreference resolution
can be found in Figure 2, in which the expressions “Maria”
and “She” are linked. Likewise, the expressions “a friend”
and “him” are linked as they refer to the same entity.
Given an input text, running a coreference resolution on it
will produce n lists of references; each list corresponds to
references to a single entity.

4ht’rp: / /www.gutenberg.org/ebooks /22



Input Text

Maria has a friend. She loves him.

POS-tagging

Maria|PROPN has|VERB a|DET friendNOUN .[PUNCT
She|PRON loves|VERB him|PRON .|PUNCT

NER

Maria | PERSON

Coreferences Resolution

1 |
T T

Maria has a friend. She loves him.

4+ 4+
T T

Coreferences
Maria, She
a friend, him

Fig. 2. An example of POS-tagging, NER, and coreference resolution.
There are two entities identified by the coreference resolution, “Maria”
and “a friend”, and the expressions referring to these entities are linked.

2.2.4 Dependency Parsing

The process of assigning a grammatical structure to a piece
of text and encoding dependency relationships between
words is known as dependency parsing [43], [44]. Encoding
such information as a parse tree, words in a text are con-
nected such that words that modify each other are linked.
For example, a dependency parse tree connects a verb to its
subject and object, and a noun to its adjectives.

cops
| ~
/ ‘ T
v ~
guy also a good billing
That from

Blade Runner

Fig. 3. Example of a dependency parse tree for the sentence “That guy
from Blade Runner also cops a good billing”. The root word of the phrase
“That guy from Blade Runner” (bolded in the above image) is “guy”.

Figure 3 shows an example of a parse tree that is out-
put by performing a dependency parsing of an input text:
“That guy from Blade Runner also cops a good billing”.
The directed, labeled edges between nodes indicate the
relationships between the parent and child nodes. From the
parse tree, the root word of a phrase can be identified. For
example, the root word of the phrase “That guy from Blade
Runner” represented in Figure 3 is “guy”, as its node does
not have any incoming edges from the nodes of other words
in the phrase.

3 BIASFINDER

Figure 4 shows the architecture of our proposed approach:
BiasFinder. It takes, as inputs, a collection of texts and a
sentiment analysis (SA) system, and produces, as outputs,
a set of bias-uncovering test cases. BiasFinder has three com-
ponents: (A) template generation engine, (B) mutant generation
engine, and (C) failure detection engine.

The template generation engine generates bias-targeting
templates from a collection of texts. These templates are
designed to target bias towards a specific characteristic (e.g.,
gender). The generated templates are input to the mutant
generation engine. This engine generates text variants (mu-
tants) that differ in a target bias characteristic (e.g., two
paragraphs, which are otherwise identical, but describe an
individual using words associated with a different gender)
and should have the same sentiment. These mutants are
then input to the failure detection engine. This engine makes
use of the metamorphic relation between mutants (i.e., they
have the same sentiment as they are generated from the
same template) to infer failures (i.e., bias). This engine
identifies mutants that uncover bias in the SA system. These
mutants are output as the bias-uncovering test cases (BTCs).

I
i BiasFinder
Input
! Template
—_—> Generation
A collection Engine
of texts
Bias-
targeting
templates
)
Mutant
Generation
Engine
Mutated
texts @
4
Input - Output
1 Failure :
—f—) Detection T
A sentiment Engine Bias-uncovering
analysis system | test cases

Fig. 4. The architecture of BiasFinder.

3.1 Template Generation Engine

The template generation engine follows the workflow in
Figure 5. It takes a collection of texts as the input and
produces bias-targeting templates. Each template is a text unit
(e.g., a paragraph) that contains one or more placeholders;
the placeholders can be substituted with concrete values to
generate different pieces of text that should have the same
sentiment.

This engine generates templates for detecting bias in a
target characteristic (e.g., gender, occupation, etc.). It ex-
tracts linguistic features such as named entities, corefer-
ences, and part-of-speech (Step 1). Using these features, it
identifies entities related to the characteristic of the targeted
bias (Step 2). If such entities exist in the texts, BiasFinder
replaces references to these entities with placeholders. Es-
sentially, the texts are converted to templates which will be
used to generate mutants to uncover the targeted bias (Step
3).

3.2 Mutant Generation Engine

To generate mutants from a bias-targeting template, this
engine replaces template placeholders with concrete values
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Fig. 5. The workflow of Template Generation Engine.

taken from pre-determined lists of possible values. These
lists differ based on the types of bias under consideration.
The engine substitutes the placeholders with concrete values
while ensuring that the generated mutants are valid. A
mutant is valid if and only if the values that are assigned
to the placeholders are in agreement with each other. For
example, we do not want to generate the following text:
“The man speaks to herself”. The engine ensures this does
not occur by picking only values from a single class (e.g.,
male-related words) to substitute related placeholders to
generate a mutant. Each generated mutant is thus associ-
ated to a class; and BiasFinder’s goal is to check if an SA
discriminates against one of the classes (e.g., male or female)
associated with a target characteristic (e.g. gender).

3.3 Failure Detection Engine

The failure detection engine takes as input a set of text
mutants, and produces a set of bias-uncovering test cases.
It feeds the mutants one-by-one to the SA system, which
outputs a sentiment label for each mutant. Mutants of
differing classes that are produced from the same template
are expected to have the same sentiment. Therefore, if the SA
predicts that two mutants of different classes have different
sentiments, they is the evidence of a biased prediction. Such
pairs of mutants are output as bias-uncovering test cases.

3.4

BiasFinder can be instantiated in various ways to uncover
different kinds of bias. In this work, we investigate 3 in-
stances of BiasFinder that can uncover gender, occupation,
and country-of-origin bias in SA systems. To instantiate Bi-
asFinder to a particular target characteristic, we need to cus-
tomize its three components: template generation engine,
mutant generation engine, and failure detection engine. We
elaborate on how we create GenderBiasFinder, an instance
of BiasFinder targeting gender bias in Section 4, and briefly
describe the two other instances of BiasFinder in Section 5.

Instantiating BiasFinder to Different Bias

4 GENDERBIASFINDER

An SA system exhibits gender bias if it behaves differ-
ently for texts that only differ in words that reflect gender.

Algorithm 1: Generating a Template for Detecting
Gender Bias.

Input: s: a text, gn: gender nouns
Output:  : a template or null
t=s;
corefs = getCoreferences(s);
names = getPersonNamedEntities(s);
coref = filter(corefs, names, gn);
if coref # null then
for r € coref do
if isPersonName(r, names) then
\ t = createPlaceholder(t, s, r, names);
end
else if isGenderPronoun(r) then
| t = createPlaceholder(t, s, 1);
end
else if hasGenderNoun(r, gn) then
\ t = createPlaceholder(t, s, 1, gn);
end
end
17 end
18 return t == s?null : ¢
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GenderBiasFinder generates mutants by changing words
associated with the gender of a person, and uncovers gender
bias when the SA system predicts differing sentiments for a
pair of mutants of different gender classes. In this work, we
focus on binary genders: male and female; but our approach
can be extended and generalized for non-binary genders. To
uncover gender bias, we follow the below descriptions to
customize the three main engines of BiasFinder: Template
Generation Engine, Mutant Generation Engine, and Failure
Detection Engine.

4.1 Template Generation Engine

Algorithm 1 shows the process for generating templates
for uncovering gender bias. Given an input text, Gender-
BiasFinder extracts linguistic features in the form of parts-
of-speech, named entities referring to person names, and
coreferences. GenderBiasFinder uses coreference resolution
(see Section 2.2.3) to find references of entities in the text
(Line 2). References to a unique entity are grouped together
in a list. The output of the coreference resolution is n lists
where n is the total number of entities mentioned in the
text, which we refer to as corefs. We also run named entity
recognition (see Section 2.2.2) to identify person named
entities (e.g., person names) in the text (Line 3).

Next, we filter coreference lists in corefs by performing
two checks embedded inside function filter (Line 4):

1) There is only one list in corefs that refers to a person.
In this work, we consider any of the following as a
reference to a person: (i) a person name, (ii) a gender
pronoun (i.e. he, she), or (iii) a phrase containing a
gender noun (e.g., “that guy from Blade Runner”).

2) All references in the list identified above must be a
reference to a person.

If both conditions are met, filter returns a coreference
list coref satisfying the condition; otherwise, it returns null.
These checks are done to avoid the generation of unsound
templates due to coreference resolution’s limitations, e.g.,
detecting a set of references to the same entity as two disjoint



lists. If there is a coref returned, GenderBiasFinder iterates
all its references and creates placeholders depending on the
type of each reference r (Lines 7-15). At the end of the
iteration, we output a template ¢ generated from the input
text s (Line 18). For each iteration, we have three cases
depending on the type of each r:

Case 1: The Reference is a Person Name (Line 7-9)

At line 7, GenderBiasFinder checks whether the refer-
ence 7 is a person’s name in the list of names names
extracted using named entity recognition (see Section 2.2.2).
If this is the case, GenderBiasFinder generates a template
by replacing the person’s name with the (name) place-
holder (Line 8). In the example shown in Figure 6, “Drew
Barrymore” is a person’s name and is replaced with this
placeholder.

Text

“Never Been Kissed” is a real feel good film. If you haven’t
seen it yet, then rent it out. I am going to buy it when its
released because I loved it. Drew Barrymore is excellent
again, she plays her part well. I felt I could relate to this
film because of the school days I had were just as bad.

Coreferences
Drew Barrymore, she, her

Person Named Entity
Drew Barrymore

Generated Template

“Never Been Kissed” is a real feel good film. If you haven’t
seen it yet, then rent it out. I am going to buy it when
its released because I loved it. (name) is excellent again,
(pro-spp) plays (pro-pp) part well. T felt I could relate to

this film because of the school days I had were just as bad.

Fig. 6. An illustrative example for Case 1 and 2 of GenderBiasFinder.

Case 2: The Reference is a Gender Pronoun (Lines 10-12)

GenderBiasFinder checks if the reference r is a gender
pronoun (Line 10). If so, GenderBiasFinder converts the
gender pronoun into (pro-id) (Line 11), where id can take
several values according to the type of the gender pronoun
that the placeholder replaces: (1) spp for subjective personal
pronoun (i.e., he and she), (2) opp for objective personal
pronoun (i.e., him and her), (3) pp for possesive pronoun
(i.e., his and her), and (4) rp for reflexive pronoun (i.e.,
himself and herself). In the example shown in Figure 6,
“she” is converted to (pro-spp) placeholder, while “her” is
converted to (pro-pp) placeholder.

Case 3: The Reference has a Gender Noun (Lines 13-15)
GenderBiasFinder checks if the root word of the reference
r is a gender noun (Line 13). GenderBiasFinder utilizes
dependency parsing (see Section 2.2.4) to find the root word
and performs POS-tagging (see Section 2.2.1) to confirm that
the root word is a noun. Next, it checks that the word exists
in gn, a collection of gender-related nouns, and if it does,
converts the root word to (gaw) placeholder (Line 14). In
the example shown in Figure 7, the reference is “That guy
from “Blade Runner””. By performing dependency parsing
and POS-tagging, “guy” is identified as the root word and
is a noun. GenderBiasFinder checks whether “guy” exists in
gn. As it does, GenderBiasFinder replaces “guy” to a (gaw)

TABLE 2
Examples of names from GenderComputer.

Name Gender Country-of-origin

Felipe Male Brazil

Abhishek Male India

Barbora Female Czech

Zeynep Female Turkey
TABLE 3

Examples of nouns reflecting gender information.

Male
boy, brother, father, dad, ...

Female

girl, sister, mother, mom, ...

placeholder. Some examples of gender nouns are shown in
Table 3. In total, we use 22 gender nouns.

Text

Even the manic loony who hangs out with the bad guys
in “Mad Max” is there. That guy from “Blade Runner”
also cops a good billing, although he only turns up at the
beginning and the end of the movie.

Coreferences
That guy from “Blade Runner”, he

Dependency Parsing of The Reference

guy

7N\

That from

Blade Runner

POS-tagging of The Reference
That|DET guy|NOUN from|ADP “|PUNCT Blade|PROPN
Runner|PROPN ”|PUNCT

Generated Template
Even the manic loony who hangs out with the bad guys
in “Mad Max” is there. That (gaw) from “Blade Runner”

also cops a good billing, although (pro-spp) only turns up
at the beginning and the end of the movie.

Fig. 7. An illustrative example for case 3 of GenderBiasFinder.

4.2 Mutant Generation Engine

For each generated template, the mutant generation engine
produces multiple mutants by replacing placeholders with
concrete values. As our objective in GenderBiasFinder is to
create test cases related to gender, each mutant is associated
with a gender class (i.e.,, male or female) and the mutant
generation engine is restricted to values associated with the
given gender class when filling in all placeholders for one
mutant. The engine iterates over all possible combinations
of the values. Each placeholder can be substituted by a value
from a set. We describe the values that each placeholder can
be substituted with below:

(name) Placeholder: Values to be substituted for this
placeholder are taken from the set of names from Gender-



Computer’. GenderComputer provides a database of male
and female names from several countries. Each name in
the GenderComputer provides information about its gender
and its country-of-origin. Examples of names from Gen-
derComputer are shown in Table 2. It is possible that a
name may be used by both genders in the same or different
countries. Thus, we filter the names to make sure that the
selected names are only used for one gender globally. To
avoid the results being affected by other types of bias, we
only pick person names originating from a single country,
i.e. the USA. To do so, we only choose the person names
from the USA category in the GenderComputer database.
The USA names from GenderComputer are accompanied by
frequency information (a number indicating how frequently
a name is used). We select N male names and N female
names of the highest frequency. By default, N is set to 30.

(pro-id) Placeholder: Values to be substituted for this
placeholder depend on the gender class of the mutant and
the ¢d. For male mutant, the values are he for id-spp, him
for id-opp, his for id-pp, and himself for id-rp. For female
mutant, the values are she for id-spp, her for id-opp, her for
id-pp, and herself for id-rp.

(gaw) Placeholder: Values to be substituted for this place-
holder are the set of gender nouns taken from several
English resources®’® Examples of these gender nouns are
shown in Table 3.

4.3 Failure Detection Engine

The Failure Detection Engine runs the SA system, using
the generated mutants as inputs. It receives, from the SA
system, a label for each mutant indicating the predicted
sentiment of the mutant. Mutants generated from the same
template are expected to have the same predicted sentiment
and are grouped together. Each group of mutants is further
divided into two classes, depending on the gender associ-
ated with the mutant. Mutants from these two classes that
have different sentiments are paired. In other words, the
engine finds pairs of mutants generated from the same tem-
plate that differ in both the gender class they are associated
with, and the sentiment predicted by the SA system. These
pairs of mutants are the bias-uncovering test cases and are
the output of GenderBiasFinder.

5 OTHER INSTANCES OF BIASFINDER

In this section, we describe how BiasFinder can be instanti-
ated for occupation and country-of-origin bias.

5.1 Occupation Bias

Occupation bias occurs when an SA system favors an honest
(i.e., non-criminal) occupation over another. It can be de-
tected when the SA system produces differing sentiment for
a pair of mutants that differ only on the occupation referred

5https: / / github.com/tue-mdse/genderComputer

6ht’rps: / /7esl.com/gender-of-nouns/

"http:/ /www.primaryresources.co.uk/english/PC_gen.htm

Shttps:/ /ielts.com.au/articles/ grammar-101-feminine-and-
masculine-words-in-english/

Algorithm 2: Generating a Template for Detecting
Occupation Bias

Input: s: a text

Output:  : a template or null
1t=s;
2 occs = getOccNamedEntities(s);
3 for occ € occs do

4 if isNoun(occ) then

5 if hasAdjective(t, occ) then

6 \ t = removeAdjective(t, occ);

7 end

8 t = createPlaceholders(t, occ);

9 occCorefs = getCoreferencesOf(s, occ);
10 for r € occCorefs do

11 if isRefContainsOcc(r, occ) then
12 if hasAdjective(t, r) then

13 | t=removeAdjective(t, r);
14 end

15 t = createPlaceholders(t, r);

16 end

17 end

18 return t;

19 end
20 end

21 return null

in the text. We perform these customizations to uncover
occupation bias:

Template Generation Engine: BiasFinder generates occu-
pation templates by following Algorithm 2. BiasFinder first
extracts the list of occupations occs mentioned in the input
text s using named entity recognition (Line 2). BiasFinder
then iterates each occupation occ from occs (Line 3). Bias-
Finder then confirms that occ is a noun and check whether
occ has adjectives (Lines 4-5). For example, the adjective of
“driver” in the “race car driver” noun phrase is “race car”. If
the noun phrase containing the occupation has an adjective,
BiasFinder removes the adjective to ensure that the gener-
ated mutant text is semantically correct (Line 6). Leaving
the adjective intact may produce a text that describes a non-
existent occupation such as “race car secretary”. BiasFinder
then converts occ to {(occupation) placeholder (Line 8). Bias-
Finder also converts determiner “a” or “an” in front of occ (if
it exists) to (det) placeholder to ensure the produced mutant
template is grammatically correct. Next, BiasFinder extracts
occCorefs (Line 9); occCorefs is the list of references in s that
refers to the same entity that occ refers to. BiasFinder then
iterates each reference r from occRefs (Line 10). BiasFinder
checks whether r is a mention of occ (Line 11). For such r,
BiasFinder again creates (occupation) and (det) placehold-
ers (if necessary), after removing adjectives (if necessary)
(Lines 12-15). At the end of this process, BiasFinder outputs
a template ¢ generated from the input text s (Line 18).

In the example shown in Figure 8, BiasFinder detects
“doctor” and “journalist” as occupations. BiasFinder only
uses the first occupation to form a template. As “doctor” is
a noun, and it is not preceded by any adjective, BiasFinder
replaces it directly to (occupation) placeholder. BiasFinder
then replaces its determiner with (det) placeholder. In this
case, there are no coreferences of “doctor”, so the template
generation process ends.



Text

The beautiful Jennifer Jones looks the part and gives a
wonderful, Oscar nominated performance as a doctor of
mixed breed during the advent of Communism in main-
land China. William Holden never looked better playing a
romantic lead as a journalist covering war torn regions in
the world.

Occupation Named Entity
doctor

Generated Template

The beautiful Jennifer Jones looks the part and
gives a wonderful, Oscar nominated performance as
(det) (occupation) of mixed breed during the advent of
Communism in mainland China. William Holden never
looked better playing a romantic lead as a journalist cov-
ering war torn regions in the world.

Fig. 8. An illustrative example for OccupationBiasFinder.

Mutant Generation Engine: To generate occupation mu-
tants, the engine substitutes the (occupation) placeholder
with a value from a set of 79 honest (i.e., non-criminal)
and gender-neutral occupation names that are taken from
[45]-[47]. The value of (det) is linked with the value of
(occupation) placeholder. For example, the values of (det)
for “teacher” and “engineer” occupations are “a” and “an”,

respectively.

Failure Detection Engine: The engine inputs the generated
mutants to the SA system. The SA system labels each mutant
with a predicted sentiment. Mutants from the same template
are grouped together and mutants in the same group that
have a different sentiment are paired. By doing so, the
engine finds pairs of mutants that differ both in the occu-
pation they mentioned and the sentiment predicted by the
SA system. These pairs of mutants are the bias-uncovering
test cases for occupation bias.

5.2 Country-of-Origin Bias

Country-of-origin bias occurs when the SA system favors a
person who originates from one country over a person orig-
inating from another country. This bias is detected when the
SA system produces different sentiments for texts differing
only in country-of-origin of the person referred in the text.
To uncover country-of-origin bias, we customize BiasFinder
as follows:

Template Generation Engine: For generating country-of-
origin templates, BiasFinder follows Algorithm 3. Bias-
Finder first runs coreference resolution to find corefs, which
contains references of persons mentioned in the input text
s (Line 1). BiasFinder also runs named entity recognition
to extract the list of person names mentioned in s (Line 2),
which BiasFinder refers to as names.

Next, BiasFinder filters coreference lists in corefs by
using the same filter function described in Algorithm 1 in
Section 4. This is done to avoid the generation of unsound
templates due to coreference resolution’s limitations. The
filter function returns either a coreference list coref or null.
BiasFinder stops the template generation process if null is
returned.

Algorithm 3: Generating a Template for Detecting
Country-of-Origin Bias

Input: s: a text
Output:  : a template or null

1 t = s; corefs = getCoreferences(s);

2 names = getPersonNamedEntities(s);

3 coref = filter(corefs, names);

4 if coref # null then

5 g = inferGender(coref);

6 if g € {Male, Female} then

7 for r € coref do

8 if isPersonName(r, names) then
9 \ t = createPlaceholder(t, s, 1, g);
10 end

11 end

12 return ¢
13 end
14 end

15 return null

Otherwise, if the references in coref refer to a consistent
gender g (Line 6) — i.e., by checking that there is a gender
pronoun in coref and all gender pronouns in it are of the
same gender (e.g., he, him, his, himself for male gender) —
BiasFinder iterates each reference r in coref (Lines 7-11). If
r is the person name in names, BiasFinder replaces r with
a placeholder representing the gender that was detected
(Lines 8-10). A (male) or (female) placeholder is created
if a male or a female gender was detected, respectively.

In the example shown in Figure 9, “Lauren Holly” is
detected as a person name and the coreferences consistently
refer to the female gender. Thus, BiasFinder replaces “Lau-
ren Holly” with (female) placeholder.

Text

I loved this movie, it was cute and funny! Lauren Holly
was wonderful, she’s funny and very believable in her role.
Coreferences

Lauren Holly, she, her

Person Named Entity

Lauren Holly

Generated Template

I loved this movie, it was cute and funny! (female) was
wonderful, she’s funny and very believable in her role.

Fig. 9. An illustrative example for CountryBiasFinder.

Mutant Generation Engine: To generate country-of-origin
mutants, the engine substitutes (male) and (female) place-
holders with values from a set of people names taken from
GenderComputer’. GenderComputer provides the country-
of-origin and the gender of each name. Since the same name
may occur in different country-of-origin and gender, we take
only unique names in both country-of-origin and gender.
We pick only a male name and a female name from each
country. In total, we have 52 names taken from 26 countries.
The placeholder values are then filled in based on the gender
associated with the name. Male and female names are used
to fill (male) and (female) placeholders, respectively.

9ht’rps: / / github.com/tue-mdse/genderComputer



Failure Detection Engine: The engine accepts the generated
mutants as input and feeds them to the SA system, which
gives a sentiment label for each mutant. Mutants from the
same template that have a different sentiment are then
paired. Here, the engine finds pairs of mutants that differ
both in the country-of-origin of the person they mentioned
and the sentiment predicted by the SA system. These pairs
of mutants are the bias-uncovering test cases for country-of-
origin bias.

6 EXPERIMENTS

In this section, we describe our dataset, experimental set-
tings, evaluation metrics, and research questions. Then, we
answer the research questions, analyze threats to validity,
and discuss potential usage of BiasFinder.

6.1 Dataset and Experimental Settings

We focus on a binary sentiment analysis task, i.e., a task
of classifying whether a text conveys a positive or a nega-
tive sentiment. A popular dataset to evaluate a sentiment
analysis system’s performance is the IMDB dataset [48],
which contains a set of 50,000 movie reviews; each review
is labelled as either having an overall positive or negative
sentiment. Some of these movie reviews contain texts that
are not a natural language, e.g.,, HTML tags. We remove
these texts from the movie reviews. Then, we split the 50,000
movie reviews evenly to train and test sets. In addition to
the IMDB dataset, we also use the Twitter Sentiment140
dataset [49]-[51], which contains 1.6 million texts associated
with either positive or negative sentiments. We randomly
pick 400,000 texts as the train set and 100,000 texts as the
test set. The selected train set and the test set are mutually
exclusive.

We use fine-tuned five Transformer-based models on
two datasets to obtain the SA systems in our experiments.
Transformer-based models have achieved state-of-the-art
performances on many NLP tasks (including sentiment
analysis) in recent years [26], [52], [53]. In this work, we
use the implementations available in HuggingFace'” to fine-
tune a number of recently proposed Transformer mod-
els (including Google BERT [54], Facebook RoBERTa [55],
Google ALBERT [56], Google ELECTRA [57], and Facebook
Muppet [58]) on the IMDB and Twitter datasets to obtain
SA models. We report the accuracy of our SA models on
the test set of each dataset in Table 4. The models’ per-
formance on the IMDB dataset is high and comparable to
the accuracy reported in a recent work that also fine-tunes
BERT for sentiment analysis [27]. The performance of our
models on randomly sampled data from the Twitter dataset
is higher than the performance reported in the recent models
presented by Tay et al. [49].

We performed our experiments on a computer run-
ning Ubuntu 18.04 with Intel(R) Core(TM) i7-9700K CPU
@ 3.60GHz processor, 64GB RAM, and NVIDIA GeForce
RTX 2080. For coreference resolution, we use NeuralCoref'!.

https:/ /huggingface.co/
Uhttps:/ /github.com /huggingface/neuralcoref

TABLE 4
The performance of SA models on the datasets.

Accuracy
Model IMDB  Twitter S140
BERT-base-cased 89.12% 83.54%
RoBERTa-base 92.84% 86.24%
ALBERT-base-v2 89.45% 82.96%
Muppet-RoBERTa-base  95.29% 85.69%
ELECTRA-base 91.20% 84.39%

We use both SpaCy'? and Stanford CoreNLP® for Part-of-
Speech (PoS) Tagging and Named Entity Recognition (NER).
The models used for these NLP tasks can be leveraged
directly without any further fine-tuning.

In our experiment, we compare BiasFinder with two
baselines: EEC [30] that uses 11 static templates to generate
texts of various features and MT-NLP [31] that performs
analogy mutation and active mutation to produce discrimina-
tory inputs. For example, MT-NLP changes “actor” (indicat-
ing male) to its analogy noun “actress” (indicating female).
The active mutation is operated by inserting an adjective
word in front of nouns that represent humans, e.g. inserting
“male” before “soldiers” to get “male soldiers”. MT-NLP
focuses on gender bias, while BiasFinder provides a general
framework that targets various types of bias.

Our objective in the study is to produce test cases that
reveal bias. As defined in Section 2.1, a bias-uncovering test
case (BTC) is a pair of texts that only differ in protected
features (e.g., gender), but are predicted as different senti-
ments by an SA system. The authors of MT-NLP [31] used
the number of fairness violations found as a metric to evaluate
the ability of a fairness testing tool in uncovering bias in SA
systems. The fairness violation concept is equivalent to BTC
in this paper.

We also perform an annotation study to evaluate
whether the mutants generated by BiasFinder and MT-NLP
are fluent since an SA system may change its prediction
because a text mutant is not fluent rather than because of
actual bias. Fluency is one of the gold-standard human eval-
uation metrics to evaluate the linguistic quality of generated
texts [59]. Fluency is defined as the quality of individual
sentences. A fluent sentence should have no formatting
problems, capitalization errors or obvious grammatical is-
sues that make the text difficult to read [60]. We consider a
mutant to be fluent if the changed parts from the sentences:
(1) look natural, i.e., no formatting problems, capitalization
errors or obvious grammatical issues, (2) are consistent with
each other and the other words, and (3) do not introduce
redundant words.

6.2 Research Questions

RQ1. How many BTCs can BiasFinder generate? How does it
compare with EEC and MT-NLP?

BiasFinder is the first approach to automatically generate
templates and text mutants to uncover multiple types of
bias. We report the number of BTCs produced by the 3

Zhttps:/ /spacy.io/
3https:/ /stanfordnlp.github.io/CoreNLP/



TABLE 5
The number of templates and mutants generated by BiasFinder, EEC
and MT-NLP on the IMDB and Twitter datasets.

IMDB Twitter
Type Tool template mutant template mutant
BiasFinder 3,015 153,866 1,769 63,104
Gender MT-NLP 95219 285976 15,150 59,462
EEC 140 8,400 140 8,400
Country BiasFinder 2,828 70,700 959 23,975
Occupation BiasFinder 14,319 1,131,201 202 15,958

instances of BiasFinder for each SA system. Since EEC and
MT-NLP only target at gender bias, we only compare them
with GenderBiasFinder to make the comparison fair. We
also report the performance of the other two instances of
BiasFinder (for occupation and country-of-origin bias).

RQ2. How fluent are the generated mutants?

We evaluate the fluency of the generated mutants via an
annotation study. The annotation study involves two partici-
pants, both of whom are native English speakers and are not
authors of this paper. The participants were asked to rate the
fluency of each mutant using a Likert scale of 1 to 3. Score 1
indicates a non-fluent text (a mutated part looks absurd or
inconsistent), 2 indicates a somewhat fluent text (a mutated
part looks natural but it is not fully consistent with the text
or contains some redundant terms), and 3 indicates a fluent
text (all mutated parts look natural, are consistent with each
other and the remaining text, and do not contain redundant
terms). We consider that the fluency of the mutants to be
passable if the average ratings given to the mutants are at
least in the middle of the Likert scale (i.e., 2).

The participants were asked to label randomly sampled
mutants generated by BiasFinder (for gender, country-of-
origin, and occupation bias) and MT-NLP (for gender bias).
The participants do not know which tools generated which
mutants. BiasFinder generates 216,970, 1,147,159, and 94,675
mutants for gender, occupation and country-of-origin bias,
respectively. MT-NLP generates 345,438 mutants for gender
bias. We want to analyze statistically representative samples
of those mutants to investigate their quality. To compute the
size of statistically significant sample size, we use a popular
online sample size calculator [61], which implements the
Cochran’s formula [62]. This online sample size calculator
is also used in a number of prior SE works, e.g., [63]-
[65]. We specify 95% confidence level and 5% confidence
interval, which are the same or a stricter setting than those
used in the prior works [63]-[65]; this setting gives our
findings a confidence level of 95% with a margin of error
of 5%. Running the online sample size calculator on each
of the 4 mutant populations returns us either 383 or 384.
To standardize, we sample 384 mutants from each mutant
population. Thus, each of our annotation study participants
needs to rate 384 x 4 mutants = 1,536 mutants. To determine
the level of agreement between the two participants in the
annotation study, we computed Cohen’s Kappa [45] and
obtained a value of 0.55 — usually interpreted as moderate
agreement [46], [47].

10

TABLE 6
The number of BTCs uncovered for gender bias.

# BTC
Model Tool IMDB  Twitter
BiasFinder 7,723 14,373
BERT-base-cased MT-NLP 1,447 793
EEC 5,674 238
BiasFinder 8,051 29,167
RoBERTa-base MT-NLP 779 886
EEC 4,560 186
BiasFinder 14,966 15,735
AIBERT-base-v2 MT-NLP 993 705
EEC 2,678 420
BiasFinder 5,747 51,569
Muppet-RoBERTa-base =~ MT-NLP 834 861
EEC 4,694 360
BiasFinder 5,862 13,573
ELECTRA-base MT-NLP 477 783
EEC 5,336 906
BiasFinder 8,469.8 24,883.4
Average MT-NLP 906 805.6
EEC 4,588.4 422
6.3 Results

RQ1. How many BTCs can BiasFinder generate?

Table 6 shows the numbers of gender BTCs found by
BiasFinder, MT-NLP, and EEC for the 5 SA models investi-
gated in our experiments. On the IMDB dataset, BiasFinder
reveals the highest number of gender BTCs for all SA
models (8,469.8 on average), while MT-NLP and EEC can
only uncover 906 and 4,588.4 gender BTCs. On the Twitter
dataset, BiasFinder also reveals the highest number of BTCs
for each SA model (24,883.4 on average). On the other hand,
MT-NLP and EEC only find 805.6 and 422 BTCs, both of
which are two orders of magnitude lower than the numbers
of gender BTCs found by BiasFinder. The comparison re-
sults on the two datasets highlight the superior capability of
BiasFinder in exposing gender bias.

Table 7 shows the numbers of country-of-origin BTCs
found by BiasFinder on the IMDB and Twitter datasets.
On average, BiasFinder finds 3,363.2 country-of-origin BTCs
on the IMDB dataset and 5,166.4 country-of-origin BTCs
on the Twitter dataset. Table 8 shows the numbers of
occupation BTCs found by BiasFinder on the IMDB and
Twitter datasets. We can observe that the average number
of occupation BTCs found on the IMDB dataset is 144,683.2
and the average number of occupation BTCs found on the
Twitter dataset is 19,021.2.

TABLE 7
The number of BTCs found by BiasFinder for country-of-origin bias.

# BTC
Model IMDB  Twitter
BERT-base-cased 4,794 4,380
RoBERTa-base 2,620 6,810
AIBERT-base-v2 3,566 4,096
Muppet-RoBERTa-base 2,832 5,554
ELECTRA-base 3,004 4,992
Average 3,363.2 5,166.4

Figure 10, 11 and 12 show examples of BTCs for gender,



occupation, and country-of-origin, respectively.

TABLE 8
The number of BTCs found by BiasFinder for occupation bias.

# BTC
Model IMDB Twitter
BERT-base-cased 200,400 16,938
RoBERTa-base 134,926 25,656
AIBERT-base-v2 184,496 16,956
Muppet-RoBERTa-base 85,256 20,098
ELECTRA-base 118,338 15,458
Average 144,683.2 19,021.2

Mutated Text - using a uniquely male name

What is he supposed to be? He was a kid in the past, .
and the future? This movie had a lot of problems Is he a
ghost, or just a strong kid. Man, ... what a piece of crap.
I'm still confused. Also, is he supposed to be an abortion?
Strange. Very strange. This movie will mess with your
mind, ... and it’s not very scary, ... just confusing. Why
was he , ... Where did, ... What was the, ... oh, who cares,
.. Benedetto isn’t worth it, ... My score: 10

Mutated Text - using a uniquely female name

What is she supposed to be? She was a kid in the past, ...
and the future? This movie had a lot of problems. Is she a
ghost, or just a strong kid. Man, ... what a piece of crap.
I'm still confused. Also, is she supposed to be an abortion?
Strange. Very strange. This movie will mess with your
mind, ... and it’s not very scary, ... just confusing. Why
was she , ... Where did, ... What was the, ... oh, who cares,
.. Elaisha isn’t worth it, ... My score: 10

Fig. 10. An example of BTC for uncovering gender bias.

Mutated Text - Housekeeper

Great underrated movie great action good actors and
a wonderful story line. Wesley is verry good and the
housekeeper the bad guy is wonderful The girl plays a
nice role and the comedy mixed with blakness!

Mutated Text - Programmer

Great underrated movie great action good actors and
a wonderful story line. Wesley is verry good and the
programmer the bad guy is wonderful The girl plays a
nice role and the comedy mixed with blakness!

Fig. 11. An example of BTC for uncovering occupation bias.

RQ2. How fluent are the generated mutants?

Table 9 shows the result of the annotation study. We find that
the average fluency ratings of mutants range from 1.77 to 3.
For gender bias, the average fluency rating of mutants gen-
erated by BiasFinder (2.61 out of 3) is 28.57%'* higher than
those generated by MT-NLP (2.03 out of 3), which highlights
the better linguistic quality of the BiasFinder mutants. For
country-of-origin bias, both participants gave the maximum

14(2.61 — 2.03)/2.03 x 100%
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Mutated Text - using a male name from Somalia

I consider this movie as one of the most interesting and
funny movies of all time ( ... ) Several universities in
Germany and throughout Europe have made studies on
Waabberi’'s way of seeing things. By the way, Waabberi is
a very intelligent and sensitive person and on of the Jazz
musicians in Germany

Mutated Text - using a male name from Iran

I consider this movie as one of the most interesting
and funny movies of all time ( ... ) Several universities
in Germany and throughout Europe have made stud-
ies on Keyghobad’s way of seeing things. By the way,
Keyghobad is a very intelligent and sensitive person and
on of the Jazz musicians in Germany

Fig. 12. An example of BTC for uncovering country-of-origin bias. (...) is
a truncated piece of the original text.

TABLE 9
User-annotated fluency scores of mutants generated by BiasFinder and
MT-NLP [31]. Mutants with higher scores are more fluent.

Fluency
Type Tool Participant 1  Participant 2 All
Gender BiasFinder 2.32 2.89 2.61
MT-NLP 1.78 2.28 2.03
Country BiasFinder 3 3 3
Occupation  BiasFinder 1.46 2.08 1.77

fluency rating (3 out of 3) for all mutants. For occupation
bias, the average fluency rating of the mutants is 1.77. This is
still higher than the halfway of the Likert scale (2) and thus
we consider it to be passable. Still, the generated occupation
mutants are not as fluent as the mutants generated for the
other bias.

We investigated the non-fluent mutants produced by
BiasFinder for occupation bias and we show an example
in Figure 13. For that example, although BiasFinder success-
fully identified the word “driver” as an occupation and can
generate a placeholder for it, replacing the placeholder with
another occupation results in a non-fluent text. The usage of
the word “driver” is specific to the context described in the
text, and it cannot be replaced with many other occupations
without losing fluency.

Original Text

Boris Leskin as Alex’s grandfather and driver of the tour
car makes a valuable contribution to the film, as well as
Laryssa Lauret, who is seen in the last part of the movie.
Mutated Text

Boris Leskin as Alex’s grandfather and secretary of the
tour car makes a valuable contribution to the film, as well
as Laryssa Lauret, who is seen in the last part of the movie.

Fig. 13. An example of a non-fluent mutant. The usage of the “driver”
word is context specific, and cannot be replaced with another occupation
(i.e., “secretary”).

6.4 Threats to Validity

We have only experimented with SA models fine-tuned
on 5 Transformer-based models and generated templates



on the IMDB and Twitter datasets. The results may not
generalize to other SA systems and datasets. However,
Transformer-based models are among the top performing
models for text classification in recent years [26], [52]-[54].
The IMDB and Twitter datasets are commonly used datasets
for studying sentiment analysis [28], [66], [67]. Another
threat to validity is that some of the found BTCs may be
caused by actual errors instead of bias, especially when the
SA models under investigation have poor performance. To
minimize this threat, we evaluate BiasFinder and baselines
on SA models constructed by fine-tuning state-of-the-art
Transformer-based models. Table 4 shows that they all have
high prediction accuracies on SA tasks.

The names used by BiasFinder are gathered from the
GenderComputer database. Although it is claimed in its
documentation that GenderComputer provides lists of male
and female first names for different countries, some last
names are found in their database. These last names are
gender independent and may affect BiasFinder’s ability to
identify BTCs if last names are used to generate mutants.
To mitigate this threat, we manually check the selected
names (30 male names and 30 female males) used in our
experiments to ensure they are all first names.

6.5 Potential Usage

In this paper, BiasFinder mainly serves as a fairness testing
tool for SA systems. We believe that the mutants generated
by BiasFinder can be utilized in other parts of the SA
systems life cycle, including model training, deployment,
and repair. When training an SA model, BiasFinder can be
used to augment the training set with texts of diverse gen-
der information to mitigate bias. At the deployment stage,
the BiasFinder’s idea can be transferred to detect biased
predictions at runtime. Since BiasFinder can dynamically
find templates for any input text, a biased prediction can
be detected at runtime by comparing the prediction from
the input text with the predictions from mutated input
texts. After detecting biased predictions, one can heal un-
fairness by leveraging prediction results for these mutants
(e.g., using the majority predictions for the mutants as the
final result). We have recently demonstrated the usage of
BiasFinder in two downstream tasks: runtime verification
of bias [68] and automatic healing of bias [69]. BiasRV [68]
is built on top of BiasFinder to identify unfair predictions
made by a deployed sentiment analysis system on the fly.
Specifically, BiasRV defines a distributional fairness concept,
a fairness property that can be verified at runtime by an-
alyzing the output distributions of mutants generated by
BiasFinder. BiasHeal [69] uses several rules to analyze an SA
system’s predictions on mutants generated by BiasFinder
and shows that unfair results can be healed on the fly
without sacrificing accuracy. In addition to the above two
use cases, BiasFinder can also be potentially utilized as a
data augmentation technique to enhance model fairness by
retraining models on BTCs. The above strategies can help to
improve the fairness of sentiment analysis systems, and they
can potentially be extended to cover other text analytics or
natural language processing systems to ensure that they are
free from different types of bias.

Besides, BiasFinder can also be potentially used in a
wider range of applications beyond sentiment analysis. In
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general, sentiment analysis can be viewed as a specialized
text classification with class labels corresponding to the
sentiment polarities of the text. Conceptually, BiasFinder
can be applicable to detect fairness issues in other text
classification tasks. There are many text classification tasks
where the main difference with sentiment analysis is in the
class labels e.g., spam vs. non-spam, fraudulent claim vs.
legitimate claim, fake news vs. real news, etc. Moreover, for
many of these tasks, fairness issues are also highly relevant.
Text classification is also a building block of many other
NLP solutions, e.g., chatbot.

7 RELATED WORK

In this section, we first describe related work on under-
standing and detecting bias in Al systems (Section 7.1).
Next, we describe some related works in testing Al systems
(Section 7.2).

7.1 Bias in Al Systems

The importance of studying bias in Al systems has been
described by many researchers [1], [2], [30], [70], [71]. An Al
system may perpetuate human bias and perform differently
for some demographic groups than others [1], [32], [70],
[71]. As such, many existing studies on uncovering bias [1]-
[3], [5], [30] focus on finding differences in the system’s
behavior given a change in a demographic characteristic
(aka. sensitive attribute). Our approach has the same high-
level objective of uncovering differences in behavior when
the demographic characteristic is modified. However, our
approach differs in several ways, which will be described in
the following paragraphs.

Themis [1], Aeqitas [2], and FairTest [3] are approaches
aiming to generate test cases that detect discrimination in
software. Fairway [4] mitigates bias through several strate-
gies, including identifying and removing ethical bias from
a model’s training data. Unlike our approach, these strate-
gies do not target NLP systems but focus on systems that
take numerical values or images as input, while BiasFinder
targets SA systems that take natural language text as input.

Specific to NLP applications, CheckList [5] has been
proposed for creating test cases to evaluate systems on their
capabilities beyond their accuracies on test datasets. Fair-
ness is among the capabilities that CheckList tests for, and
CheckList relies on a small number of predefined templates
for producing test sentences. Our work is complementary to
this approach as it can be used to produce test cases without
the restriction of predefined templates.

For SA systems, Diaz et al. [32] manually identify and
replace words that explicitly or implicitly encode age infor-
mation in input texts to uncover age-related bias. EEC [30]
has been proposed to uncover bias by detecting differences
in predictions of text differing in a single word associated
with gender or race. However, as described earlier in Section
2, other researchers [9] have pointed out that EEC [30] relies
on predefined templates that may be too simplistic. We
address this limitation as our approach dynamically gen-
erates many templates to produce sentences that are varied
and realistic. Moreover, our approach uncovers bias through
mutating words in text associated with characteristics other
than gender and race.



Compared to these prior works, our work is “wider” in
two aspects: First, many of them require extensive manual
steps (e.g., creating limited numbers of templates manually)
while our work is fully automated. Second, many of them
focus on only one kind of fairness issue (e.g., gender bias
only), while we have shown that our approach can be
generalized across multiple fairness issues (i.e., gender bias,
country-of-origin bias, occupation bias).

7.2 Al Testing

In recent years, many researchers have proposed techniques
for testing Al systems. There are too many of them to men-
tion here. Still, we would like to highlight a few, especially
those that are closer to our work. For a comprehensive
treatment on the topic of Al testing, please refer to the
survey by Zhang et al. [72].

Existing studies have applied metamorphic testing to Al
systems [73]-[76]. Many of these systems focus on finding
bugs, for example, in machine translation [73], [76] , au-
tonomous driving systems [74], [75], or automatic speech
recognition [77]-[79]. Our work is related to these studies as
BiasFinder is based on metamorphic testing, but differs in
that we focus on finding fairness bugs (gender, occupation,
and country-of-origin bias) in SA systems.

In the NLP domain, some research efforts have devel-
oped methods for generating adversarial examples [80],
[81], while other researchers have proposed techniques to
test robustness to typos and other forms of noise [82], or
changes in the names of people mentioned in text [83]. Our
work differs from these studies as it focuses on uncovering
bias rather than testing the correctness of an NLP system.

8 CONCLUSION AND FUTURE WORK

There is growing use of Artificial Intelligence in software
systems, and fairness is an important requirement in Ar-
tificial Intelligence systems. Testing is one way to uncover
unintended bias. Our research contributes to the body of
work on fairness testing and motivates future research to
build automatic fairness testing methods for various ma-
chine learning tasks, including sentiment analysis (that we
consider in this work).

We propose BiasFinder, a metamorphic testing frame-
work for creating test cases to uncover bias in Sentiment
Analysis (SA) systems. BiasFinder can be instantiated for
different demographic characteristics, such as gender or
occupation. Given a characteristic of interest, BiasFinder cu-
rates suitable texts from a corpus to create bias-uncovering
templates. From these templates, BiasFinder then produces
mutated texts (mutants) that differ only in words associated
with different classes (e.g., male vs. female) of the target
characteristic (e.g., gender). These mutants are then used to
tease out unintended bias in SA systems and identify bias-
uncovering test cases. By analyzing a realistic and diverse
corpus, BiasFinder can produce realistic and diverse bias-
uncovering test cases. BiasFinder generates templates of
test cases involving other characteristics, including gender,
occupation and country-of-origin. Together, the template
and mutation generation produces test cases that cover a
wider range of scenarios.
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We empirically evaluated BiasFinder against two prior
works. For gender bias, BiasFinder can uncover more BTCs
than both EEC and MT-NLP on all SA systems under
investigation. BiasFinder can also find additional BTCs for
occupation and country-of-origin bias. Through a manual
annotation study, we show that human annotators consis-
tently consider mutants generated by BiasFinder are more
fluent than mutants generated by MT-NLP.

In the future, we plan to instantiate BiasFinder for
more types of bias and extend the experiments (e.g., by
considering other text corpora). Moreover, we will evaluate
BiasFinder to determine if it generalizes to other NLP tasks
beyond sentiment analysis, for example, testing general text
classifiers.
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